Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (10): 622-626.doi: 10.3760/cma.j.cn371439-20210429-00122
• Reviews • Previous Articles Next Articles
He Miao1, Fan Kui2, Cao Fang3()
Received:
2021-04-29
Revised:
2021-08-02
Online:
2021-10-08
Published:
2021-11-24
Contact:
Cao Fang
E-mail:sdcaofang@163.com
Supported by:
He Miao, Fan Kui, Cao Fang. Epigenetics and drug resistance in lung cancer[J]. Journal of International Oncology, 2021, 48(10): 622-626.
[1] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1):7-33. DOI: 10.3322/caac.21654.
doi: 10.3322/caac.21654 |
[2] |
Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma[J]. Cell Death Dis, 2018, 9(2):117. DOI: 10.1038/s41419-017-0063-y.
doi: 10.1038/s41419-017-0063-y pmid: 29371589 |
[3] |
Kelly AD, Issa JJ. The promise of epigenetic therapy: reprogramming the cancer epigenome[J]. Curr Opin Genet Dev, 2017, 42:68-77. DOI: 10.1016/j.gde.2017.03.015.
doi: 10.1016/j.gde.2017.03.015 |
[4] |
Castilho RM, Squarize CH, Almeida LO. Epigenetic modifications and head and neck cancer: implications for tumor progression and resistance to therapy[J]. Int J Mol Sci, 2017, 18(7):1506. DOI: 10.3390/ijms18071506.
doi: 10.3390/ijms18071506 |
[5] |
Darılmaz Yüce G, Ortaç Ersoy E. Lung cancer and epigenetic modifications[J]. Tuberk Toraks, 2016, 64(2):163-170. DOI: 10.5578/tt.10231.
doi: 10.5578/tt.10231 |
[6] |
Tariq I, Ali MY, Janga H, et al. Downregulation of MDR 1 gene contributes to tyrosine kinase inhibitor induce apoptosis and reduction in tumor metastasis: a gravity to space investigation[J]. Int J Pharm, 2020, 591:119993. DOI: 10.1016/j.ijpharm.2020.119993.
doi: 10.1016/j.ijpharm.2020.119993 |
[7] |
Li A, Song J, Lai Q, et al. Hypermethylation of ATP-binding cassette B1 (ABCB1) multidrug resistance 1 (MDR1) is associated with cisplatin resistance in the A549 lung adenocarcinoma cell line[J]. Int J Exp Pathol, 2016, 97(6):412-421. DOI: 10.1111/iep.12212.
doi: 10.1111/iep.12212 |
[8] |
Pankova D, Jiang Y, Chatzifrangkeskou M, et al. RASSF1A controls tissue stiffness and cancer stem-like cells in lung adenocarcinoma[J]. EMBO J, 2019, 38(13):e100532. DOI: 10.15252/embj.2018100532.
doi: 10.15252/embj.2018100532 |
[9] |
Sun F, Li L, Yan P, et al. Causative role of PDLIM2 epigenetic repression in lung cancer and therapeutic resistance[J]. Nat Commun, 2019, 10(1):5324.DOI: 10.1038/s41467-019-13331-x.
doi: 10.1038/s41467-019-13331-x |
[10] |
Krushkal J, Silvers T, Reinhold WC, et al. Epigenome-wide DNA methylation analysis of small cell lung cancer cell lines suggests potential chemotherapy targets[J]. Clin Epigenetics, 2020, 12(1):93. DOI: 10.1186/s13148-020-00876-8.
doi: 10.1186/s13148-020-00876-8 pmid: 32586373 |
[11] |
De Smedt E, Lui H, Maes K, et al. The epigenome in multiple myeloma: impact on tumor cell plasticity and drug response[J]. Front Oncol, 2018, 8:566. DOI: 10.3389/fonc.2018.00566.
doi: 10.3389/fonc.2018.00566 pmid: 30619733 |
[12] |
Benton CB, Fiskus W, Bhalla KN. Targeting histone acetylation: readers and writers in leukemia and cancer[J]. Cancer J, 2017, 23(5):286-291. DOI: 10.1097/PPO.0000000000000284.
doi: 10.1097/PPO.0000000000000284 |
[13] |
Gardner EE, Lok BH, Schneeberger VE, et al. Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis[J]. Cancer Cell, 2017, 31(2):286-299. DOI: 10.1016/j.ccell.2017.01.006.
doi: S1535-6108(17)30006-5 pmid: 28196596 |
[14] |
Rowbotham SP, Li F, Dost AFM, et al. H3K9 methyltransferases and demethylases control lung tumor-propagating cells and lung cancer progression[J]. Nat Commun, 2018, 9(1):4559. DOI: 10.1038/s41467-018-07077-1.
doi: 10.1038/s41467-018-07077-1 pmid: 30455465 |
[15] |
Mi W, Guan H, Lyu J, et al. YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer[J]. Nat Commun, 2017, 8(1):1088. DOI: 10.1038/s41467-017-01173-4.
doi: 10.1038/s41467-017-01173-4 |
[16] |
Zamagni A, Pasini A, Pirini F, et al. CDKN1A upregulation and cisplatin-pemetrexed resistance in non-small cell lung cancer cells[J]. Int J Oncol, 2020, 56(6):1574-1584. DOI: 10.3892/ijo.2020.5024.
doi: 10.3892/ijo.2020.5024 pmid: 32236605 |
[17] |
Bertran-Alamillo J, Cattan V, Schoumacher M, et al. AURKB as a target in non-small cell lung cancer with acquired resistance to anti-EGFR therapy[J]. Nat Commun, 2019, 10(1):1812. DOI: 10.1038/s41467-019-09734-5.
doi: 10.1038/s41467-019-09734-5 pmid: 31000705 |
[18] |
Ning S, Li X. Non-coding RNA resources[J]. Adv Exp Med Biol, 2018, 1094:1-7. DOI: 10.1007/978-981-13-0719-5_1.
doi: 10.1007/978-981-13-0719-5_1 |
[19] |
Hu C, Meiners S, Lukas C, et al. Role of exosomal microRNAs in lung cancer biology and clinical applications[J]. Cell Prolif, 2020, 53(6):e12828. DOI: 10.1111/cpr.12828.
doi: 10.1111/cpr.12828 |
[20] |
Qin X, Yu S, Zhou L, et al. Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner[J]. Int J Nanomedicine, 2017, 12:3721-3733. DOI: 10.2147/IJN.S131516.
doi: 10.2147/IJN.S131516 |
[21] |
Tan W, Liao Y, Qiu Y, et al. miRNA 146a promotes chemotherapy resistance in lung cancer cells by targeting DNA damage inducible transcript 3 (CHOP)[J]. Cancer Lett, 2018, 428:55-68. DOI: 10.1016/j.canlet.2018.04.028.
doi: 10.1016/j.canlet.2018.04.028 |
[22] |
Zhang X, Xie K, Zhou H, et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance[J]. Mol Cancer, 2020, 19(1):47. DOI: 10.1186/s12943-020-01171-z.
doi: 10.1186/s12943-020-01171-z |
[23] |
李智, 许静凯, 张博. 长非编码RNA在肿瘤中的作用机制[J]. 国际肿瘤学杂志, 2018, 45(4):220-222. DOI: 10.3760/cma.j.issn.1673-422X.2018.04.007.
doi: 10.3760/cma.j.issn.1673-422X.2018.04.007 |
[24] |
Feng C, Zhao Y, Li Y, et al. LncRNA MALAT1 promotes lung cancer proliferation and gefitinib resistance by acting as a miR-200a sponge[J]. Arch Bronconeumol (Engl Ed), 2019, 55(12):627-633. DOI: 10.1016/j.arbres.2019.03.026.
doi: 10.1016/j.arbres.2019.03.026 |
[25] |
Huang N, Guo W, Ren K, et al. LncRNA AFAP1-AS1 supresses miR-139-5p and promotes cell proliferation and chemotherapy resis-tance of non-small cell lung cancer by competitively upregulating RRM2[J]. Front Oncol, 2019, 9:1103. DOI: 10.3389/fonc.2019.01103.
doi: 10.3389/fonc.2019.01103 pmid: 31696057 |
[26] | Hou T, Ma J, Hu C, et al. Decitabine reverses gefitinib resistance in PC9 lung adenocarcinoma cells by demethylation of RASSF1A and GADD45β promoter[J]. Int J Clin Exp Pathol, 2019, 12(11):4002-4010. |
[27] |
Lai Q, Wang H, Li A, et al. Decitibine improve the efficiency of anti-PD-1 therapy via activating the response to IFN/PD-L1 signal of lung cancer cells[J]. Oncogene, 2018, 37(17):2302-2312. DOI: 10.1038/s41388-018-0125-3.
doi: 10.1038/s41388-018-0125-3 pmid: 29422611 |
[28] |
Patel K, Doddapaneni R, Patki M, et al. Erlotinib-valproic acid liquisolid formulation: evaluating oral bioavailability and cytotoxicity in erlotinib-resistant non-small cell lung cancer cells[J]. AAPS Pharm Sci Tech, 2019, 20(3):135. DOI: 10.1208/s12249-019-1332-0.
doi: 10.1208/s12249-019-1332-0 |
[29] |
Zang H, Qian G, Zong D, et al. Overcoming acquired resistance of epidermal growth factor receptor-mutant non-small cell lung cancer cells to osimertinib by combining osimertinib with the histone deacetylase inhibitor panobinostat (LBH589)[J]. Cancer, 2020, 126(9):2024-2033. DOI: 10.1002/cncr.32744.
doi: 10.1002/cncr.32744 |
[30] |
Park SE, Kim DE, Kim MJ, et al. Vorinostat enhances gefitinib induced cell death through reactive oxygen species-dependent cleavage of HSP90 and its clients in non-small cell lung cancer with the EGFR mutation[J]. Oncol Rep, 2019, 41(1):525-533. DOI: 10.3892/or.2018.6814.
doi: 10.3892/or.2018.6814 |
[31] |
Jiang P, Xu C, Chen L, et al. Epigallocatechin-3-gallate inhibited cancer stem cell-like properties by targeting hsa-miR-485-5p/RXRα in lung cancer[J]. J Cell Biochem, 2018, 119(10):8623-8635. DOI: 10.1002/jcb.27117.
doi: 10.1002/jcb.27117 pmid: 30058740 |
[32] |
Jiang P, Xu C, Chen L, et al. EGCG inhibits CSC-like properties through targeting miR-485/CD44 axis in A549-cisplatin resistant cells[J]. Mol Carcinog, 2018, 57(12):1835-1844. DOI: 10.1002/mc.22901.
doi: 10.1002/mc.22901 |
[33] |
Lu M, Liu B, Xiong H, et al. Trans-3,5,4'-trimethoxystilbene reduced gefitinib resistance in NSCLCs via suppressing MAPK/Akt/Bcl-2 pathway by upregulation of miR-345 and miR-498[J]. J Cell Mol Med, 2019, 23(4):2431-2441. DOI: 10.1111/jcmm.14086.
doi: 10.1111/jcmm.14086 |
[34] |
Gao L, Shao T, Zheng W, et al. Curcumin suppresses tumor growth of gemcitabine-resistant non-small cell lung cancer by regulating lncRNA-MEG3 and PTEN signaling[J]. Clin Transl Oncol, 2021, 23(7):1386-1393. DOI: 10.1007/s12094-020-02531-3.
doi: 10.1007/s12094-020-02531-3 pmid: 33566305 |
[35] |
Liu H, Zhao H. Prognosis related miRNAs, DNA methylation, and epigenetic interactions in lung adenocarcinoma[J]. Neoplasma, 2019, 66(3):487-493. DOI: 10.4149/neo_2018_181029N805.
doi: 10.4149/neo_2018_181029N805 pmid: 30868896 |
[36] |
Cao LL, Song X, Pei L, et al. Histone deacetylase HDAC1 expression correlates with the progression and prognosis of lung cancer: a meta-analysis[J]. Medicine (Baltimore), 2017, 96(31):e7663. DOI: 10.1097/MD.0000000000007663.
doi: 10.1097/MD.0000000000007663 |
[37] |
Yang Y, Ding L, Hu Q, et al. MicroRNA-218 functions as a tumor suppressor in lung cancer by targeting IL-6/STAT3 and negatively correlates with poor prognosis[J]. Mol Cancer, 2017, 16(1):141. DOI: 10.1186/s12943-017-0710-z.
doi: 10.1186/s12943-017-0710-z pmid: 28830450 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[3] | Gong Yan, Chen Honglei. Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer [J]. Journal of International Oncology, 2024, 51(3): 186-190. |
[4] | Liu Bohan, Huang Junxing. Research progress of liquid biopsy technology in esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(2): 105-108. |
[5] | He Jiahui, Hu Qinyong. Comparative analysis of lung cancer incidence and mortality trends and risk factors in China and the United States based on GBD data [J]. Journal of International Oncology, 2024, 51(1): 29-36. |
[6] | Liu Yang, Jiang Lulu, Guan Kaiwen, Zhou Yueyang, Kang Xiaohong. Role of linc01410 in the occurrence and development of malignant tumors [J]. Journal of International Oncology, 2023, 50(9): 540-543. |
[7] | Cui Manli, Lu Ning, Zhu Lin, Li Qian, Zhang Mingxin. Analysis of circRNA in esophageal squamous cell carcinoma based on high-throughput sequencing data [J]. Journal of International Oncology, 2023, 50(6): 328-335. |
[8] | Quan Zhenhao, Xu Feipeng, Huang Zhe, Huang Xianjin, Chen Rihong, Sun Kaiyu, Hu Xu, Lin Lin. lncRNA FTX silencing inhibits gastric cancer cell proliferation through the miR-22-3p/NLRP3 inflammasome pathway [J]. Journal of International Oncology, 2023, 50(4): 202-207. |
[9] | Bai Ying, Li Qi, Li Yaqin, Zhao Weihong. Role of E2F1 and lncRNAs in the development of malignant tumors [J]. Journal of International Oncology, 2023, 50(3): 164-168. |
[10] | Zuo Xiaoping, Liu Xiaochuan, Wu Xiqiang, Li Zhou, Xia Tian, Liu Guofeng. Risk factors and prediction model construction of arrhythmia in elderly patients with early lung cancer after thoracoscopic pulmonary resection [J]. Journal of International Oncology, 2023, 50(12): 711-716. |
[11] | Chen Yu, Xu Hua, Liu Hai, Chen Shixin. Construction of pathological classification prediction model for malignant pulmonary pure ground-glass nodule patients based on CT imaging [J]. Journal of International Oncology, 2023, 50(11): 655-660. |
[12] | Yan Xuemin, Wu Xiaoyong, Zhang Jiayi, Wen Jinxu, Wang Yuexin. SPRY4-IT1 and breast cancer [J]. Journal of International Oncology, 2023, 50(10): 627-630. |
[13] | Zhu Qiwei, Cui Juanjuan, Zhang Zihan, Yang Yanguang, Ge Binbin, Liu Yu, Chu Kaiyue. Cardiac dosimetry analysis and quality of life evaluation of internal breast lymph node irradiation in postoperative left breast cancer [J]. Journal of International Oncology, 2023, 50(1): 17-21. |
[14] | Ma Xiaoping, Chang Junli, Sun Xingyuan, Yang Yanping. Study progression on mechanism of long non-coding RNAs regulating drug resistance in osteosarcoma [J]. Journal of International Oncology, 2023, 50(1): 51-54. |
[15] | Yang Sha, Yang Xiaohua, Wang Suhua, Xue Xiaoyan, Xu Jun. Analysis of risk factors for deep vein thrombosis of lower extremity after thoracoscopic surgery for elderly lung cancer and establishment and validation of prediction model [J]. Journal of International Oncology, 2022, 49(9): 532-536. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||