[1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
|
[2] |
Xin M, Bi F, Wang C, et al. The circadian rhythm: a new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system[J]. J Adv Res, 2024: S2090-1232(24)00133-4. DOI: 10.1016/j.jare.2024.04.005.
|
[3] |
Zhang L, Chen Y, Chong CS, et al. The genomic and transcriptomic landscapes of clock genes reveal the significance of circadian rhythm in the progression and immune microenvironment of metastatic colorectal cancer[J]. Clin Transl Med, 2022, 12(3): e755. DOI: 10.1002/ctm2.755.
pmid: 35297192
|
[4] |
Aroca-Siendones MI, Moreno-SanJuan S, Puentes-Pardo JD, et al. Core circadian clock proteins as biomarkers of progression in colorectal cancer[J]. Biomedicines, 2021, 9(8): 967. DOI: 10.3390/biomedicines9080967.
|
[5] |
Laothamatas I, Rasmussen ES, Green CB, et al. Metabolic and chemical architecture of the mammalian circadian clock[J]. Cell Chem Biol, 2023, 30(9): 1033-1052. DOI: 10.1016/j.chembiol.2023.08.014.
pmid: 37708890
|
[6] |
高旗旗, 孙阳. 节律基因家族在上皮性卵巢癌发生发展及治疗中的研究进展[J]. 中华医学杂志, 2019, 99(44): 3517-3520. DOI: 10.3760/cma.j.issn.0376-2491.2019.44.016.
|
[7] |
Rezaeian AH, Dang F, Wei W. The circadian clock, aging and its implications in cancer[J]. Neoplasia, 2023, 41: 100904. DOI: 10.1016/j.neo.2023.100904.
|
[8] |
Zhou Q, Wang R, Su Y, et al. The molecular circadian rhythms regulating the cell cycle[J]. J Cell Biochem, 2024, 125(4): e30539. DOI: 10.1002/jcb.30539.
|
[9] |
Ding G, Li X, Hou X, et al. REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity[J]. Nature, 2021, 592(7856): 763-767. DOI: 10.1038/s41586-021-03358-w.
|
[10] |
Batra T, Malik I, Prabhat A, et al. Sleep in unnatural times: illuminated night negatively affects sleep and associated hypothalamic gene expressions in diurnal zebra finches[J]. Proc Biol Sci, 2020, 287(1928): 20192952. DOI: 10.1098/rspb.2019.2952.
|
[11] |
Ligasová A, Frydrych I, Koberna K. Basic methods of cell cycle analysis[J]. Int J Mol Sci, 2023, 24(4): 3674. DOI: 10.3390/ijms24043674.
|
[12] |
Zhu H, Chen J, Wen Z, et al. The role of circadian clock genes in colorectal carcinoma: novel insights into regulatory mechanism and implications in clinical therapy[J]. Life Sci, 2023, 333: 122145. DOI: 10.1016/j.lfs.2023.122145.
|
[13] |
Rao X, Lin L. Circadian clock as a possible control point in colorectal cancer progression(review)[J]. Int J Oncol, 2022, 61(6): 149. DOI: 10.3892/ijo.2022.5439.
|
[14] |
Wang Z, Zhou L, Wang Y, et al. The CK1δ/ε-AES axis regulates tumorigenesis and metastasis in colorectal cancer[J]. Theranostics, 2021, 11(9): 4421-4435. DOI: 10.7150/thno.53901.
pmid: 33754069
|
[15] |
Chun SK, Fortin BM, Fellows RC, et al. Disruption of the circadian clock drives Apc loss of heterozygosity to accelerate colorectal cancer[J]. Sci Adv, 2022, 8(32): eabo2389. DOI: 10.1126/sciadv.abo2389.
|
[16] |
Peri SS, Narayanaa Y K, Hubert TD, et al. Navigating tumour microenvironment and Wnt signalling crosstalk: implications for advanced cancer therapeutics[J]. Cancers (Basel), 2023, 15(24): 5847. DOI: 10.3390/cancers15245847.
|
[17] |
Bass J. Interorgan rhythmicity as a feature of healthful metabolism[J]. Cell Metab, 2024, 36(4): 655-669. DOI: 10.1016/j.cmet.2024.01.009.
|
[18] |
O'Sullivan DE, Sutherland RL, Town S, et al. Risk factors for early-onset colorectal cancer: a systematic review and meta-analysis[J]. Clin Gastroenterol Hepatol, 2022, 20(6): 1229-1240.e5. DOI: 10.1016/j.cgh.2021.01.037.
|
[19] |
Fuhr L, El-Athman R, Scrima R, et al. The circadian clock regulates metabolic phenotype rewiring via HKDC1 and modulates tumor progression and drug response in colorectal cancer[J]. EBioMedicine, 2018, 33: 105-121. DOI: 10.1016/j.ebiom.2018.07.002.
pmid: 30005951
|
[20] |
Kim J, Sun W. Circadian coordination: understanding interplay between circadian clock and mitochondria[J]. Anim Cells Syst (Seoul), 2024, 28(1): 228-236. DOI: 10.1080/19768354.2024.2347503.
|
[21] |
Wu Z, Xiao C, Long J, et al. Mitochondrial dynamics and colorectal cancer biology: mechanisms and potential targets[J]. Cell Commun Signal, 2024, 22(1): 91. DOI: 10.1186/s12964-024-01490-4.
pmid: 38302953
|
[22] |
Chen J, Zhu H, Yin Y, et al. Colorectal cancer: metabolic interactions reshape the tumor microenvironment[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(5): 188797. DOI: 10.1016/j.bbcan.2022.188797.
|
[23] |
Wang Y, Narasimamurthy R, Qu M, et al. Circadian regulation of cancer stem cells and the tumor microenvironment during metastasis[J]. Nat Cancer, 2024, 5(4): 546-556. DOI: 10.1038/s43018-024-00759-4.
|
[24] |
Rebersek M. Gut microbiome and its role in colorectal cancer[J]. BMC Cancer, 2021, 21(1): 1325. DOI: 10.1186/s12885-021-09054-2.
pmid: 34895176
|
[25] |
安江宏, 钱莘, 骆璞, 等. 肠道微生态与肿瘤的诊断和治疗[J]. 国际肿瘤学杂志, 2021, 48(7): 436-440. DOI: 10.3760/cma.j.cn371439-20201019-00084.
|
[26] |
Bishehsari F, Voigt RM, Keshavarzian A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer[J]. Nat Rev Endocrinol, 2020, 16(12): 731-739. DOI: 10.1038/s41574-020-00427-4.
pmid: 33106657
|
[27] |
Liu JL, Xu X, Rixiati Y, et al. Dysfunctional circadian clock accelerates cancer metastasis by intestinal microbiota triggering accumulation of myeloid-derived suppressor cells[J]. Cell Metab, 2024, 36(6): 1320-1334.e9. DOI: 10.1016/j.cmet.2024.04.019.
|
[28] |
Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target[J]. Nat Rev Drug Discov, 2021, 20(4): 287-307. DOI: 10.1038/s41573-020-00109-w.
pmid: 33589815
|
[29] |
Ali YF, Hong Z, Liu NA, et al. Clock in radiation oncology clinics: cost-free modality to alleviate treatment-related toxicity[J]. Cancer Biol Ther, 2022, 23(1): 201-210. DOI: 10.1080/15384047.2022.2041953.
pmid: 35263235
|
[30] |
Harper E, Talbot CJ. Is it time to change radiotherapy: the dawning of chronoradiotherapy?[J]. Clin Oncol (R Coll Radiol), 2019, 31(5): 326-335. DOI: 10.1016/j.clon.2019.02.010.
pmid: 30902558
|
[31] |
Sancar A, Van Gelder R N. Clocks, cancer, and chronochemotherapy[J]. Science, 2021, 371(6524): eabb0738. DOI: 10.1126/science.abb0738.
|
[32] |
Niu Y, Fan X, Wang Y, et al. Genome-wide CRISPR screening reveals pyrimidine metabolic reprogramming in 5-FU chronochemotherapy of colorectal cancer[J]. Front Oncol, 2022, 12: 949715. DOI: 10.3389/fonc.2022.949715.
|
[33] |
Innominato PF, Karaboué A, Focan C, et al. Efficacy and safety of chronomodulated irinotecan, oxaliplatin, 5-fluorouracil and leucovorin combination as first- or second-line treatment against metastatic colorectal cancer: results from the international EORTC 05011 trial[J]. Int J Cancer, 2021, 148(10): 2512-2521. DOI: 10.1002/ijc.33422.
|
[34] |
Yang Y, Lindsey-Boltz LA, Vaughn CM, et al. Circadian clock, carcinogenesis, chronochemotherapy connections[J]. J Biol Chem, 2021, 297(3): 101068. DOI: 10.1016/j.jbc.2021.101068.
|
[35] |
Pick R, Wang C, Zeng Q, et al. Circadian rhythms in anticancer immunity: mechanisms and treatment opportunities[J]. Annu Rev Immunol, 2024, 42(1): 83-102. DOI: 10.1146/annurev-immunol-090122-050842.
pmid: 38941606
|
[36] |
Fortin BM, Pfeiffer SM, Insua-Rodríguez J, et al. Circadian control of tumor immunosuppression affects efficacy of immune checkpoint blockade[J]. Nat Immunol, 2024, 25(7): 1257-1269. DOI: 10.1038/s41590-024-01859-0.
pmid: 38806707
|