国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (1): 47-50.doi: 10.3760/cma.j.cn371439-20220715-00009
收稿日期:
2022-07-15
修回日期:
2022-11-25
出版日期:
2023-01-08
发布日期:
2023-03-16
通讯作者:
孙鹏飞
E-mail:ery_sunpf@lzu.edu.cn
Ma Xueyan1, Lu Lili1, Sun Pengfei2()
Received:
2022-07-15
Revised:
2022-11-25
Online:
2023-01-08
Published:
2023-03-16
Contact:
Sun Pengfei
E-mail:ery_sunpf@lzu.edu.cn
摘要:
淋巴细胞亚群、肿瘤相关巨噬细胞等作为肿瘤微环境中主要的免疫细胞,与其分泌的细胞因子相互作用共同构成免疫微环境,已成为宫颈癌复发转移的重要参与者,亦可影响宫颈癌同步放化疗的敏感性,进而影响患者的疗效和预后。近年来以免疫微环境为基础的宫颈癌免疫和靶向治疗已成为宫颈癌领域的研究热点。
马雪艳, 鲁历历, 孙鹏飞. 免疫微环境在宫颈癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 47-50.
Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer[J]. Journal of International Oncology, 2023, 50(1): 47-50.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Kudela E, Liskova A, Samec M, et al. The interplay between the vaginal microbiome and innate immunity in the focus of predictive, preventive, and personalized medical approach to combat HPV-induced cervical cancer[J]. EPMA J, 2021, 12(2): 199-220. DOI: 10.1007/s13167-021-00244-3.
doi: 10.1007/s13167-021-00244-3 pmid: 34194585 |
[3] |
Yuan Y, Cai X, Shen F, et al. HPV post-infection microenvironment and cervical cancer[J]. Cancer Lett, 2021, 497: 243-254. DOI: 10.1016/j.canlet.2020.10.034.
doi: 10.1016/j.canlet.2020.10.034 pmid: 33122098 |
[4] |
Chen XJ, Han LF, Wu XG, et al. Clinical significance of CD163+ and CD68+ tumor-associated macrophages in high-risk HPV-related cervical cancer[J]. J Cancer, 2017, 8(18): 3868-3875. DOI: 10.7150/jca.21444.
doi: 10.7150/jca.21444 |
[5] |
Zhang J, Jin S, Li X, et al. Human papillomavirus type 16 disables the increased natural killer cells in early lesions of the cervix[J]. J Immunol Res, 2019, 2019: 9182979. DOI: 10.1155/2019/9182979.
doi: 10.1155/2019/9182979 |
[6] |
Maskey N, Thapa N, Maharjan M, et al. Infiltrating CD4 and CD8 lymphocytes in HPV infected uterine cervical milieu[J]. Cancer Manag Res, 2019, 11: 7647-7655. DOI: 10.2147/CMAR.S217264.
doi: 10.2147/CMAR.S217264 pmid: 31616181 |
[7] |
Lin D, Kouzy R, Abi Jaoude J, et al. Microbiome factors in HPV-driven carcinogenesis and cancers[J]. PLoS Pathog, 2020, 16(6): e1008524. DOI: 10.1371/journal.ppat.1008524.
doi: 10.1371/journal.ppat.1008524 |
[8] |
Wang X, Huang X, Zhang Y. Involvement of human papillomaviruses in cervical cancer[J]. Front Microbiol, 2018, 9: 2896. DOI: 10.3389/fmicb.2018.02896.
doi: 10.3389/fmicb.2018.02896 pmid: 30546351 |
[9] |
de Geus V, Ewing-Graham PC, de Koning W, et al. Identifying molecular changes in early cervical cancer samples of patients that developed metastasis[J]. Front Oncol, 2021, 11: 715077. DOI: 10.3389/fonc.2021.715077.
doi: 10.3389/fonc.2021.715077 |
[10] |
Ohno A, Iwata T, Katoh Y, et al. Tumor-infiltrating lymphocytes predict survival outcomes in patients with cervical cancer treated with concurrent chemoradiotherapy[J]. Gynecol Oncol, 2020, 159(2): 329-334. DOI: 10.1016/j.ygyno.2020.07.106.
doi: 10.1016/j.ygyno.2020.07.106 pmid: 32829964 |
[11] |
Tang A, Dadaglio G, Oberkampf M, et al. B cells promote tumor progression in a mouse model of HPV-mediated cervical cancer[J]. Int J Cancer, 2016, 139(6): 1358-1371. DOI: 10.1002/ijc.30169.
doi: 10.1002/ijc.30169 pmid: 27130719 |
[12] |
Kim SS, Shen S, Miyauchi S, et al. B cells improve overall survival in HPV-associated squamous cell carcinomas and are activated by radiation and PD-1 blockade[J]. Clin Cancer Res, 2020, 26(13): 3345-3359. DOI: 10.1158/1078-0432.CCR-19-3211.
doi: 10.1158/1078-0432.CCR-19-3211 pmid: 32193227 |
[13] |
Gutiérrez-Hoya A, Soto-Cruz I. NK cell regulation in cervical cancer and strategies for immunotherapy[J]. Cells, 2021, 10(11): 3104. DOI: 10.3390/cells10113104.
doi: 10.3390/cells10113104 |
[14] |
Venancio PA, Consolaro MEL, Derchain SF, et al. Indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase expression in HPV infection, SILs, and cervical cancer[J]. Cancer Cytopathol, 2019, 127(9): 586-597. DOI: 10.1002/cncy.22172.
doi: 10.1002/cncy.22172 pmid: 31412167 |
[15] |
Xiang X, Wang J, Lu D, et al. Targeting tumor-associated macrophages to synergize tumor immunotherapy[J]. Signal Transduct Target Ther, 2021, 6(1): 75. DOI: 10.1038/s41392-021-00484-9.
doi: 10.1038/s41392-021-00484-9 |
[16] |
Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines[J]. Immunity, 2014, 41(1): 14-20. DOI: 10.1016/j.immuni.2014.06.008.
doi: 10.1016/j.immuni.2014.06.008 pmid: 25035950 |
[17] |
Guo F, Kong W, Zhao G, et al. The correlation between tumor-associated macrophage infiltration and progression in cervical carcinoma[J]. Biosci Rep, 2021, 41(5): BSR20203145. DOI:10.1042/BSR20203145.
doi: 10.1042/BSR20203145 |
[18] |
Wu L, Liu H, Guo H, et al. Circulating and tumor-infiltrating myeloid-derived suppressor cells in cervical carcinoma patients[J]. Oncol Lett, 2018, 15(6): 9507-9515. DOI: 10.3892/ol.2018.8532.
doi: 10.3892/ol.2018.8532 pmid: 29844835 |
[19] |
Liang Y, Lü B, Zhao P, et al. Increased circulating GrMyeloid-derived suppressor cells correlated with tumor burden and survival in locally advanced cervical cancer patient[J]. J Cancer, 2019, 10(6): 1341-1348. DOI: 10.7150/jca.29647.
doi: 10.7150/jca.29647 pmid: 31031843 |
[20] |
Lu Z, Zhu M, Marley JL, et al. The combined action of monocytic myeloid-derived suppressor cells and mucosal-associated invariant T cells promotes the progression of cervical cancer[J]. Int J Cancer, 2021, 148(6): 1499-1507. DOI: 10.1002/ijc.33411.
doi: 10.1002/ijc.33411 pmid: 33245569 |
[21] |
Zhang L, Yu X, Zheng L, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer[J]. Nature, 2018, 564(7735): 268-272. DOI: 10.1038/s41586-018-0694-x.
doi: 10.1038/s41586-018-0694-x |
[22] |
Bonin CM, Padovani CTJ, da Costa IP, et al. Detection of regulatory T cell phenotypic markers and cytokines in patients with human papillomavirus infection[J]. J Med Virol, 2019, 91(2): 317-325. DOI: 10.1002/jmv.25312.
doi: 10.1002/jmv.25312 pmid: 30192406 |
[23] |
舒航, 徐中华, 朱皓晨, 等. 宫颈癌放疗敏感性研究进展[J]. 国际肿瘤学杂志, 2020, 47(8): 496-500. DOI: 10.3760/cma.j.cn371439-20191120-00064.
doi: 10.3760/cma.j.cn371439-20191120-00064 |
[24] |
Sato H, Okonogi N, Nakano T. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment[J]. Int J Clin Oncol, 2020, 25(5): 801-809. DOI: 10.1007/s10147-020-01666-1.
doi: 10.1007/s10147-020-01666-1 pmid: 32246277 |
[25] |
Mori Y, Sato H, Kumazawa T, et al. Analysis of radiotherapy-induced alteration of CD8+ T cells and PD-L1 expression in patients with uterine cervical squamous cell carcinoma[J]. Oncol Lett, 2021, 21(6): 446. DOI: 10.3892/ol.2021.12707.
doi: 10.3892/ol.2021.12707 |
[26] |
崔昌裕. 放疗对宫颈癌患者外周血淋巴细胞亚群及炎症因子水平的影响[D]. 延安: 延安大学, 2022. DOI: 10.27438/d.cnki.gyadu.2022.000621.
doi: 10.27438/d.cnki.gyadu.2022.000621 |
[27] |
Jarosz-Biej M, Smolarczyk R, Cichoń T, et al. Tumor microenvironment as a "game changer" in cancer radiotherapy[J]. Int J Mol Sci, 2019, 20(13): 3212. DOI: 10.3390/ijms20133212.
doi: 10.3390/ijms20133212 |
[28] |
Zhang Y, Yu M, Jing Y, et al. Baseline immunity and impact of chemotherapy on immune microenvironment in cervical cancer[J]. Br J Cancer, 2021, 124(2): 414-424. DOI: 10.1038/s41416-020-01123-w.
doi: 10.1038/s41416-020-01123-w |
[29] |
Herter JM, Kiljan M, Kunze S, et al. Influence of chemoradiation on the immune microenvironment of cervical cancer patients[J]. Strahlenther Onkol, 2022, Inpress. DOI: 10.1007/s00066-022-02007-z.
doi: 10.1007/s00066-022-02007-z |
[30] |
Chen R, Yang W, Li Y, et al. Effect of immunotherapy on the immune microenvironment in advanced recurrent cervical cancer[J]. Int Immunopharmacol, 2022, 106: 108630. DOI: 10.1016/j.intimp.2022.108630.
doi: 10.1016/j.intimp.2022.108630 |
[31] |
Jazaeri AA, Zsiros E, Amaria RN, et al. Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma[J]. J Clin Oncol, 2019, 37(15_suppl): 2538. DOI: 10.1200/JCO.2019.37.15_suppl.2538.
doi: 10.1200/JCO.2019.37.15_suppl.2538 |
[32] |
Huang H, Nie CP, Liu XF, et al. Phase Ⅰ study of adjuvant immunotherapy with autologous tumor-infiltrating lymphocytes in locally advanced cervical cancer[J]. J Clin Invest, 2022, 132(15): e157726. DOI: 10.1172/JCI157726.
doi: 10.1172/JCI157726 |
[33] |
Aspeslagh S, Postel-Vinay S, Rusakiewicz S, et al. Rationale for anti-OX40 cancer immunotherapy[J]. Eur J Cancer, 2016, 52: 50-66. DOI: 10.1016/j.ejca.2015.08.021.
doi: 10.1016/j.ejca.2015.08.021 pmid: 26645943 |
[34] |
Panda A, Rosenfeld JA, Singer EA, et al. Genomic and immunologic correlates of LAG-3 expression in cancer[J]. Oncoimmuno-logy, 2020, 9(1): 1756116. DOI: 10.1080/2162402X.2020.1756116.
doi: 10.1080/2162402X.2020.1756116 |
[35] |
Solinas C, De Silva P, Bron D, et al. Significance of TIM3 expression in cancer: from biology to the clinic[J]. Semin Oncol, 2019, 46(4-5): 372-379. DOI: 10.1053/j.seminoncol.2019.08.005.
doi: S0093-7754(18)30257-4 pmid: 31733828 |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[3] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[4] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
[5] | 傅旖, 马辰莺, 张露, 周菊英. 生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[6] | 张文馨, 夏泠, 彭晋, 周福祥. 甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[7] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇. 信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[8] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[9] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[10] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[11] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[12] | 钱晓涛, 石子宜, 胡格. Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
[13] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[14] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰. 髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. |
[15] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||