
国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (11): 677-680.doi: 10.3760/cma.j.cn371439-20220612-00133
收稿日期:2022-06-12
									
				
											修回日期:2022-09-22
									
				
									
				
											出版日期:2022-11-08
									
				
											发布日期:2022-12-06
									
			通讯作者:
					路丹
											E-mail:doctorlu1972@163.com
												基金资助:Received:2022-06-12
									
				
											Revised:2022-09-22
									
				
									
				
											Online:2022-11-08
									
				
											Published:2022-12-06
									
			Contact:
					Lu Dan   
											E-mail:doctorlu1972@163.com
												Supported by:摘要:
免疫抑制性肿瘤微环境是影响免疫检查点抑制剂疗效的重要因素之一。磷脂酰肌醇3-激酶(PI3K)相关信号通路是参与肿瘤发生发展的重要通路,该通路的异常激活与肿瘤免疫抑制性微环境的形成有着错综复杂的联系。深入讨论PI3K相关通路在肿瘤微环境中的作用机制,可以为提高免疫治疗疗效提供一定的方向和思路,发掘免疫治疗的潜力。
李瑛珏, 路丹. PI3K通路在肿瘤免疫微环境中的作用机制[J]. 国际肿瘤学杂志, 2022, 49(11): 677-680.
Li Yingjue, Lu Dan. Mechanism of PI3K pathway in tumor immune microenvironment[J]. Journal of International Oncology, 2022, 49(11): 677-680.
| [1] |  
											  Roma-Rodrigues C, Mendes R, Baptista PV, et al.  Targeting tumor microenvironment for cancer therapy[J]. Int J Mol Sci, 2019, 20(4): 840. DOI: 10.3390/ijms20040840. 
											 												 doi: 10.3390/ijms20040840  | 
										
| [2] |  
											  O'Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(3): 151-167. DOI: 10.1038/s41571-018-0142-8. 
											 												 doi: 10.1038/s41571-018-0142-8 pmid: 30523282  | 
										
| [3] |  
											  Topalian SL, Hodi FS, Brahmer JR, et al.  Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 2443-2454. DOI: 10.1056/NEJMoa1200690. 
											 												 doi: 10.1056/NEJMoa1200690  | 
										
| [4] |  
											  Wu X, Gu Z, Chen Y, et al.  Application of PD-1 blockade in cancer immunotherapy[J]. Comput Struct Biotechnol J, 2019, 17: 661-674. DOI: 10.1016/j.csbj.2019.03.006. 
											 												 doi: 10.1016/j.csbj.2019.03.006  | 
										
| [5] |  
											  Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint blockade-based combination therapies[J]. Cancer Cell, 2018, 33(4): 581-598. DOI: 10.1016/j.ccell.2018.03.005. 
											 												 doi: S1535-6108(18)30109-0 pmid: 29634946  | 
										
| [6] |  
											  Ramapriyan R, Caetano MS, Barsoumian HB, et al.  Altered cancer metabolism in mechanisms of immunotherapy resistance[J]. Pharmacol Ther, 2019, 195: 162-171. DOI: 10.1016/j.pharmthera.2018.11.004. 
											 												 doi: 10.1016/j.pharmthera.2018.11.004  | 
										
| [7] |  
											  du Rusquec P, Blonz C, Frenel JS, et al.  Targeting the PI3K/Akt/mTOR pathway in estrogen-receptor positive HER2 negative advanced breast cancer[J]. Ther Adv Med Oncol, 2020, 12: 1758835920940939. DOI: 10.1177/1758835920940939. 
											 												 doi: 10.1177/1758835920940939  | 
										
| [8] |  
											  Vanhaesebroeck B, Perry MWD, Brown JR, et al.  PI3K inhibitors are finally coming of age[J]. Nat Rev Drug Discov, 2021, 20(10): 741-769. DOI: 10.1038/s41573-021-00209-1. 
											 												 doi: 10.1038/s41573-021-00209-1 pmid: 34127844  | 
										
| [9] |  
											  Fruman DA, Chiu H, Hopkins BD, et al.  The PI3K pathway in human disease[J]. Cell, 2017, 170(4): 605-635. DOI: 10.1016/j.cell.2017.07.029. 
											 												 doi: S0092-8674(17)30865-6 pmid: 28802037  | 
										
| [10] |  
											  Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46. DOI: 10.1158/2159-8290.CD-21-1059. 
											 												 doi: 10.1158/2159-8290.CD-21-1059 pmid: 35022204  | 
										
| [11] |  
											  Liu M, Wei F, Wang J, et al.  Myeloid-derived suppressor cells regulate the immunosuppressive functions of PD-1-PD-L1+Bregs through PD-L1/PI3K/AKT/NF-κB axis in breast cancer[J]. Cell Death Dis, 2021, 12(5): 465. DOI: 10.1038/s41419-021-03745-1. 
											 												 doi: 10.1038/s41419-021-03745-1  | 
										
| [12] |  
											  Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review[J]. J Cell Physiol, 2019, 234(6): 8509-8521. DOI: 10.1002/jcp.27782. 
											 												 doi: 10.1002/jcp.27782 pmid: 30520029  | 
										
| [13] |  
											  Xiang X, Wang J, Lu D, et al.  Targeting tumor-associated macrophages to synergize tumor immunotherapy[J]. Signal Transduct Target Ther, 2021, 6(1): 75. DOI: 10.1038/s41392-021-00484-9. 
											 												 doi: 10.1038/s41392-021-00484-9  | 
										
| [14] |  
											  Kaneda MM, Messer KS, Ralainirina N, et al.  PI3Kγ is a molecular switch that controls immune suppression[J]. Nature, 2016, 539(7629): 437-442. DOI: 10.1038/nature19834. 
											 												 doi: 10.1038/nature19834  | 
										
| [15] |  
											  Kaneda MM, Cappello P, Nguyen AV, et al.  Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression[J]. Cancer Discov, 2016, 6(8): 870-885. DOI: 10.1158/2159-8290.CD-15-1346. 
											 												 doi: 10.1158/2159-8290.CD-15-1346 pmid: 27179037  | 
										
| [16] |  
											  Yang C, Chen C, Xiao Q, et al.  Relationship between PTEN and angiogenesis of esophageal squamous cell carcinoma and the underlying mechanism[J]. Front Oncol, 2021, 11: 739297. DOI: 10.3389/fonc.2021.739297. 
											 												 doi: 10.3389/fonc.2021.739297  | 
										
| [17] |  
											  Shen M, Wang J, Yu W, et al.  A novel MDSC-induced PD-1-PD-L1+ B-cell subset in breast tumor microenvironment possesses immuno-suppressive properties[J]. Oncoimmunology, 2018, 7(4): e1413520. DOI: 10.1080/2162402X.2017.1413520. 
											 												 doi: 10.1080/2162402X.2017.1413520  | 
										
| [18] |  
											  Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity[J]. Nat Rev Immunol, 2021, 21(8): 485-498. DOI: 10.1038/s41577-020-00490-y. 
											 												 doi: 10.1038/s41577-020-00490-y pmid: 33526920  | 
										
| [19] |  
											  Motz GT, Santoro SP, Wang LP, et al.  Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors[J]. Nat Med, 2014, 20(6): 607-615. DOI: 10.1038/nm.3541. 
											 												 doi: 10.1038/nm.3541 pmid: 24793239  | 
										
| [20] |  
											  Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment[J]. Science, 2015, 348(6230): 74-80. DOI: 10.1126/science.aaa6204. 
											 												 doi: 10.1126/science.aaa6204 pmid: 25838376  | 
										
| [21] |  
											  Chang CZ, Wu SC, Chang CM, et al.  Arctigenin, a potent ingre-dient of Arctium lappa L., induces endothelial nitric oxide synthase and attenuates subarachnoid hemorrhage-induced vasospasm through PI3K/Akt pathway in a rat model[J]. Biomed Res Int, 2015, 2015: 490209. DOI: 10.1155/2015/490209. 
											 												 doi: 10.1155/2015/490209  | 
										
| [22] | Shen W, Li HL, Liu L, et al. Expression levels of PTEN, HIF-1α, and VEGF as prognostic factors in ovarian cancer[J]. Eur Rev Med Pharmacol Sci, 2017, 21(11): 2596-2603. | 
| [23] |  
											  Peng W, Chen JQ, Liu C, et al.  Loss of PTEN promotes resistance to T cell-mediated immunotherapy[J]. Cancer Discov, 2016, 6(2): 202-216. DOI: 10.1158/2159-8290.CD-15-0283. 
											 												 doi: 10.1158/2159-8290.CD-15-0283 pmid: 26645196  | 
										
| [24] |  
											  Lastwika KJ, Wilson W 3rd, Li QK, et al.  Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer[J]. Cancer Res, 2016, 76(2): 227-238. DOI: 10.1158/0008-5472.CAN-14-3362. 
											 												 doi: 10.1158/0008-5472.CAN-14-3362 pmid: 26637667  | 
										
| [25] |  
											  Gao Y, Yang J, Cai Y, et al.  IFN-γ-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling[J]. Int J Cancer, 2018, 143(4): 931-943. DOI: 10.1002/ijc.31357. 
											 												 doi: 10.1002/ijc.31357 pmid: 29516506  | 
										
| [26] |  
											  Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint[J]. Immunity, 2018, 48(3): 434-452. DOI: 10.1016/j.immuni.2018.03.014. 
											 												 doi: S1074-7613(18)30090-6 pmid: 29562194  | 
										
| [27] |  
											  Yao X, Tu Y, Xu Y, et al.  Endoplasmic reticulum stress-induced exosomal miR-27a-3p promotes immune escape in breast cancer via regulating PD-L1 expression in macrophages[J]. J Cell Mol Med, 2020, 24(17): 9560-9573. DOI: 10.1111/jcmm.15367. 
											 												 doi: 10.1111/jcmm.15367  | 
										
| [28] |  
											  Mansour FA, Al-Mazrou A, Al-Mohanna F, et al.  PD-L1 is overexpressed on breast cancer stem cells through notch3/mTOR axis[J]. Oncoimmunology, 2020, 9(1): 1729299. DOI: 10.1080/2162402X.2020.1729299. 
											 												 doi: 10.1080/2162402X.2020.1729299  | 
										
| [29] |  
											  Li X, Wenes M, Romero P, et al.  Navigating metabolic pathways to enhance antitumour immunity and immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(7): 425-441. DOI: 10.1038/s41571-019-0203-7. 
											 												 doi: 10.1038/s41571-019-0203-7 pmid: 30914826  | 
										
| [30] |  
											  Scharping NE, Menk AV, Moreci RS, et al.  The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction[J]. Immunity, 2016, 45(3): 701-703. DOI: 10.1016/j.immuni.2016.08.009. 
											 												 doi: S1074-7613(16)30333-8 pmid: 27653602  | 
										
| [31] |  
											  Lim S, Liu H, Madeira da Silva L, et al.  Immunoregulatory protein B7-H3 reprograms glucose metabolism in cancer cells by ROS-mediated stabilization of HIF1α[J]. Cancer Res, 2016, 76(8): 2231-2242. DOI: 10.1158/0008-5472.CAN-15-1538. 
											 												 doi: 10.1158/0008-5472.CAN-15-1538 pmid: 27197253  | 
										
| [32] |  
											  Katheder NS, Khezri R, O'Farrell F, et al.  Microenvironmental autophagy promotes tumour growth[J]. Nature, 2017, 541(7637): 417-420. DOI: 10.1038/nature20815. 
											 												 doi: 10.1038/nature20815  | 
										
| [33] |  
											  Verhoeven J, Baelen J, Agrawal M, et al.  Endothelial cell autophagy in homeostasis and cancer[J]. FEBS Lett, 2021, 595(11): 1497-1511. DOI: 10.1002/1873-3468.14087. 
											 												 doi: 10.1002/1873-3468.14087 pmid: 33837545  | 
										
| [34] |  
											  Janku F, McConkey DJ, Hong DS, et al.  Autophagy as a target for anticancer therapy[J]. Nat Rev Clin Oncol, 2011, 8(9): 528-539. DOI: 10.1038/nrclinonc.2011.71. 
											 												 doi: 10.1038/nrclinonc.2011.71 pmid: 21587219  | 
										
| [35] |  
											  Xu Z, Han X, Ou D, et al.  Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy[J]. Appl Microbiol Biotechnol, 2020, 104(2): 575-587. DOI: 10.1007/s00253-019-10257-8. 
											 												 doi: 10.1007/s00253-019-10257-8 pmid: 31832711  | 
										
| [36] |  
											  Yamamoto K, Venida A, Yano J, et al.  Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-Ⅰ[J]. Nature, 2020, 581(7806): 100-105. DOI: 10.1038/s41586-020-2229-5. 
											 												 doi: 10.1038/s41586-020-2229-5  | 
										
| [37] |  
											  Jabbarzadeh Kaboli P, Salimian F, Aghapour S, et al.  Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer—a comprehensive review from chemotherapy to immunotherapy[J]. Pharmacol Res, 2020, 156: 104806. DOI: 10.1016/j.phrs.2020.104806. 
											 												 doi: 10.1016/j.phrs.2020.104806  | 
										
| [1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. | 
| [2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. | 
| [3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. | 
| [4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. | 
| [5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. | 
| [6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. | 
| [7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. | 
| [8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. | 
| [9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. | 
| [10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. | 
| [11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. | 
| [12] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. | 
| [13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. | 
| [14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. | 
| [15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||
