国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (3): 177-180.doi: 10.3760/cma.j.cn371439-20211115-00030
收稿日期:
2021-11-15
修回日期:
2021-12-22
出版日期:
2022-03-08
发布日期:
2022-03-22
通讯作者:
殷红
E-mail:hongyin_74@126.com
Luo Hong, Yin Hong(), Hu Guangyue, Tao Hong
Received:
2021-11-15
Revised:
2021-12-22
Online:
2022-03-08
Published:
2022-03-22
Contact:
Yin Hong
E-mail:hongyin_74@126.com
摘要:
免疫检查点抑制剂(ICI)不仅能在短时间内延长非小细胞肺癌(NSCLC)患者的生存时间,甚至还能对肿瘤实现持久应答。然而,ICI的疗效在不同类型NSCLC患者中存在显著异质性,目前仍缺乏普遍的生物标志物来预测ICI治疗的获益情况。炎症在肿瘤的发生发展中起一定作用,血清中多种炎性标志物也成为反映免疫状态的临床指标,如乳酸脱氢酶、C反应蛋白、血清中性粒细胞、淋巴细胞、血小板等指标。这些炎性标志物简单易得,与多种实体肿瘤的预后相关。
罗宏, 殷红, 胡广越, 陶红. 血清炎性标志物对非小细胞肺癌免疫治疗的预测价值[J]. 国际肿瘤学杂志, 2022, 49(3): 177-180.
Luo Hong, Yin Hong, Hu Guangyue, Tao Hong. Predictive value of serum inflammatory markers in immunotherapy of non-small cell lung cancer[J]. Journal of International Oncology, 2022, 49(3): 177-180.
[1] |
Global Burden of Disease Cancer Collaboration; Fitzmaurice C, Abate D, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study[J]. JAMA Oncol, 2019, 5(12):1749-1768. DOI: 10.1001/jamaoncol.2019.2996.
doi: 10.1001/jamaoncol.2019.2996 pmid: 31560378 |
[2] |
Joshi S, Durden DL. Combinatorial approach to improve cancer immunotherapy: rational drug design strategy to simultaneously hit multiple targets to kill tumor cells and to activate the immune system[J]. J Oncol, 2019, 2019:5245034. DOI: 10.1155/2019/5245034.
doi: 10.1155/2019/5245034 |
[3] |
Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial[J]. Lancet, 2019, 393(10183):1819-1830. DOI: 10.1016/S0140-6736(18)32409-7.
doi: 10.1016/S0140-6736(18)32409-7 |
[4] |
Wojas-Krawczyk K, Kalinka E, Grenda A, et al. Beyond PD-L1 markers for lung cancer immunotherapy[J]. Int J Mol Sci, 2019, 20(8):1915. DOI: 10.3390/ijms20081915.
doi: 10.3390/ijms20081915 |
[5] |
Rossi JF, Lu ZY, Massart C, et al. Dynamic immune/inflammation precision medicine: the good and the bad inflammation in infection and cancer[J]. Front Immunol, 2021, 12:595722. DOI: 10.3389/fimmu.2021.595722.
doi: 10.3389/fimmu.2021.595722 |
[6] |
Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6(1):263. DOI: 10.1038/s41392-021-00658-5.
doi: 10.1038/s41392-021-00658-5 |
[7] |
Mishra D, Banerjee D. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment[J]. Cancers (Basel), 2019, 11(6):750. DOI: 10.3390/cancers11060750.
doi: 10.3390/cancers11060750 |
[8] |
Deng T, Zhang J, Meng Y, et al. Higher pretreatment lactate dehydrogenase concentration predicts worse overall survival in patients with lung cancer[J]. Medicine (Baltimore), 2018, 97(38):e12524. DOI: 10.1097/MD.0000000000012524.
doi: 10.1097/MD.0000000000012524 |
[9] |
Lahoud RM, O'Shea A, El-Mouhayyar C, et al. Tumour markers and their utility in imaging of abdominal and pelvic malignancies[J]. Clin Radiol, 2021, 76(2):99-107. DOI: 10.1016/j.crad.2020.07.033.
doi: 10.1016/j.crad.2020.07.033 pmid: 32861463 |
[10] |
Zhang Z, Li Y, Yan X, et al. Pretreatment lactate dehydrogenase may predict outcome of advanced non small-cell lung cancer patients treated with immune checkpoint inhibitors: a meta-analysis[J]. Cancer Med, 2019, 8(4):1467-1473. DOI: 10.1002/cam4.2024.
doi: 10.1002/cam4.2024 |
[11] |
Michels N, van Aart C, Morisse J, et al. Chronic inflammation towards cancer incidence: a systematic review and meta-analysis of epidemiological studies[J]. Crit Rev Oncol Hematol, 2021, 157:103177. DOI: 10.1016/j.critrevonc.2020.103177.
doi: 10.1016/j.critrevonc.2020.103177 |
[12] |
Iivanainen S, Ahvonen J, Knuuttila A, et al. Elevated CRP levels indicate poor progression-free and overall survival on cancer patients treated with PD-1 inhibitors[J]. ESMO Open, 2019, 4(4):e000531. DOI: 10.1136/esmoopen-2019-000531.
doi: 10.1136/esmoopen-2019-000531 |
[13] |
Riedl JM, Barth DA, Brueckl WM, et al. C-reactive protein (CRP) levels in immune checkpoint inhibitor response and progression in advanced non-small cell lung cancer: a bi-center study[J]. Cancers (Basel), 2020, 12(8):2319. DOI: 10.3390/cancers12082319.
doi: 10.3390/cancers12082319 |
[14] |
Patil NS, Zou W, Mocci S, et al. C-reactive protein reduction post treatment is associated with improved survival in atezolizumab (anti-PD-L1) treated non-small cell lung cancer patients[J]. PLoS One, 2021, 16(2):e0246486. DOI: 10.1371/journal.pone.0246486.
doi: 10.1371/journal.pone.0246486 |
[15] |
Katayama Y, Yamada T, Chihara Y, et al. Significance of inflammatory indexes in atezolizumab monotherapy outcomes in previously treated non-small-cell lung cancer patients[J]. Sci Rep, 2020, 10(1):17495. DOI: 10.1038/s41598-020-74573-0.
doi: 10.1038/s41598-020-74573-0 pmid: 33060826 |
[16] |
Lee PY, Oen KQX, Lim GRS, et al. Neutrophil-to-lymphocyte ratio predicts development of immune-related adverse events and outcomes from immune checkpoint blockade: a case-control study[J]. Cancers (Basel), 2021, 13(6):1308. DOI: 10.3390/cancers13061308.
doi: 10.3390/cancers13061308 |
[17] |
Li Y, Zhang Z, Hu Y, et al. Pretreatment neutrophil-to-lymphocyte ratio (NLR) may predict the outcomes of advanced non-small-cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs)[J]. Front Oncol, 2020, 10:654. DOI: 10.3389/fonc.2020.00654.
doi: 10.3389/fonc.2020.00654 |
[18] |
Russo A, Franchina T, Ricciardi GRR, et al. Baseline neutrophi-lia, derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), and outcome in non small cell lung cancer (NSCLC) treated with nivolumab or docetaxel[J]. J Cell Physiol, 2018, 233(10):6337-6343. DOI: 10.1002/jcp.26609.
doi: 10.1002/jcp.26609 |
[19] |
Mezquita L, Preeshagul I, Auclin E, et al. Predicting immunothe-rapy outcomes under therapy in patients with advanced NSCLC using dNLR and its early dynamics[J]. Eur J Cancer, 2021, 151:211-220. DOI: 10.1016/j.ejca.2021.03.011.
doi: 10.1016/j.ejca.2021.03.011 pmid: 34022698 |
[20] |
Pavan A, Calvetti L, Dal Maso A, et al. Peripheral blood markers identify risk of immune-related toxicity in advanced non-small cell lung cancer treated with immune-checkpoint inhibitors[J]. Oncologist, 2019, 24(8):1128-1136. DOI: 10.1634/theoncologist.2018-0563.
doi: 10.1634/theoncologist.2018-0563 |
[21] |
Ravindranathan D, Master VA, Bilen MA. Inflammatory markers in cancer immunotherapy[J]. Biology (Basel), 2021, 10(4):325. DOI: 10.3390/biology10040325.
doi: 10.3390/biology10040325 |
[22] |
Egami S, Kawazoe H, Hashimoto H, et al. Peripheral blood biomarkers predict immune-related adverse events in non-small cell lung cancer patients treated with pembrolizumab: a multicenter retrospective study[J]. J Cancer, 2021, 12(7):2105-2112. DOI: 10.7150/jca.53242.
doi: 10.7150/jca.53242 |
[23] |
Bilen MA, Martini DJ, Liu Y, et al. The prognostic and predictive impact of inflammatory biomarkers in patients who have advanced-stage cancer treated with immunotherapy[J]. Cancer, 2019, 125(1):127-134. DOI: 10.1002/cncr.31778.
doi: 10.1002/cncr.31778 |
[24] |
Qi Y, Liao D, Fu X, et al. Elevated platelet-to-lymphocyte corresponds with poor outcome in patients with advanced cancer receiving anti-PD-1 therapy[J]. Int Immunopharmacol, 2019, 74:105707. DOI: 10.1016/j.intimp.2019.105707.
doi: 10.1016/j.intimp.2019.105707 |
[25] |
Xu H, He A, Liu A, et al. Evaluation of the prognostic role of platelet-lymphocyte ratio in cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis[J]. Int Immunopharmacol, 2019, 77:105957. DOI: 10.1016/j.intimp.2019.105957.
doi: 10.1016/j.intimp.2019.105957 |
[26] |
Kartolo A, Holstead R, Khalid S, et al. Serum neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in prognosticating immunotherapy efficacy[J]. Immunotherapy, 2020, 12(11):785-798. DOI: 10.2217/imt-2020-0105.
doi: 10.2217/imt-2020-0105 pmid: 32657234 |
[27] |
Benitez JC, Recondo G, Rassy E, et al. The LIPI score and inflammatory biomarkers for selection of patients with solid tumors treated with checkpoint inhibitors[J]. Q J Nucl Med Mol Imaging, 2020, 64(2):162-174. DOI: 10.23736/S1824-4785.20.03250-1.
doi: 10.23736/S1824-4785.20.03250-1 pmid: 32107903 |
[28] |
Ruiz-Bañobre J, Areses-Manrique MC, Mosquera-Martínez J, et al. Evaluation of the lung immune prognostic index in advanced non-small cell lung cancer patients under nivolumab monotherapy[J]. Transl Lung Cancer Res, 2019, 8(6):1078-1085. DOI: 10.21037/tlcr.2019.11.07.
doi: 10.21037/tlcr.2019.11.07 |
[29] |
Sorich MJ, Rowland A, Karapetis CS, et al. Evaluation of the lung immune prognostic index for prediction of survival and response in patients treated with atezolizumab for NSCLC: pooled analysis of clinical trials[J]. J Thorac Oncol, 2019, 14(8):1440-1446. DOI: 10.1016/j.jtho.2019.04.006.
doi: 10.1016/j.jtho.2019.04.006 |
[30] |
Minami S, Ihara S, Komuta K. Pretreatment lung immune prognostic index is a prognostic marker of chemotherapy and epidermal growth factor receptor tyrosine kinase inhibitor[J]. World J Oncol, 2019, 10(1):35-45. DOI: 10.14740/wjon1179.
doi: 10.14740/wjon1179 pmid: 30834050 |
[31] |
Petrella F, Radice D, Casiraghi M, et al. Glasgow prognostic score class 2 predicts prolonged intensive care unit stay in patients undergoing pneumonectomy[J]. Ann Thorac Surg, 2016, 102(6):1898-1904. DOI: 10.1016/j.athoracsur.2016.05.111.
doi: 10.1016/j.athoracsur.2016.05.111 |
[32] |
Ni XF, Wu J, Ji M, et al. Effect of C-reactive protein/albumin ratio on prognosis in advanced non-small-cell lung cancer[J]. Asia Pac J Clin Oncol, 2018, 14(6):402-409. DOI: 10.1111/ajco.13055.
doi: 10.1111/ajco.13055 |
[33] |
Matsubara T, Takamori S, Haratake N, et al. The impact of immune-inflammation-nutritional parameters on the prognosis of non-small cell lung cancer patients treated with atezolizumab[J]. J Thorac Dis, 2020, 12(4):1520-1528. DOI: 10.21037/jtd.2020.02.27.
doi: 10.21037/jtd.2020.02.27 pmid: 32395289 |
[1] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[2] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[3] | 张文馨, 夏泠, 彭晋, 周福祥. 甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[4] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇. 信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[5] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[6] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[7] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[8] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[9] | 崔腾璐, 吕璐, 孙鹏飞. 放疗联合免疫治疗在头颈部鳞状细胞癌治疗中的应用[J]. 国际肿瘤学杂志, 2023, 50(9): 548-552. |
[10] | 李开春, 丁昌利, 于文艳. 安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. |
[11] | 过慈良, 江春平, 吴俊华. 肠道菌群与肿瘤免疫治疗[J]. 国际肿瘤学杂志, 2023, 50(7): 432-436. |
[12] | 陈秋, 王雷, 王明琦, 张梅. 恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. |
[13] | 李青珊, 谢鑫, 张楠, 刘帅. 放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[14] | 顾安琴, 龙金华, 金风. 鼻咽癌免疫治疗的临床研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 299-303. |
[15] | 丁浩, 应劲涛, 付茂勇. CAR-T在食管鳞状细胞癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 231-235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||