
国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (5): 308-312.doi: 10.3760/cma.j.cn371439-20200528-00059
收稿日期:2020-05-28
									
				
											修回日期:2020-09-15
									
				
									
				
											出版日期:2021-05-08
									
				
											发布日期:2021-06-09
									
			通讯作者:
					朱颖蔚,徐克群
											E-mail:ywzhu@163.com;13775001122@139.com
												
        
               		Yan Zhiying, Mao Yifeng, Zhu Yingwei(
), Xu Kequn(
)
			  
			
			
			
                
        
    
Received:2020-05-28
									
				
											Revised:2020-09-15
									
				
									
				
											Online:2021-05-08
									
				
											Published:2021-06-09
									
			Contact:
					Zhu Yingwei,Xu Kequn   
											E-mail:ywzhu@163.com;13775001122@139.com
												摘要:
胰腺癌发病率逐年增高,但临床诊治进展有限,预后差。胰腺癌中肿瘤微环境(TME)与肿瘤侵袭转移和化疗耐药密切相关。癌相关成纤维细胞(CAF)是一种处于持续活化状态的成纤维细胞,是TME中最重要的细胞成分之一。CAF可通过多种分子介导的多种机制,促进胰腺癌的恶性生物学行为。而靶向CAF治疗胰腺癌疗效不佳,可能与胰腺癌中CAF存在异质性有关。故对其异质性深入研究,并以此为基础精确靶向基质中某些特定表型和功能的CAF亚型,在胰腺癌的临床治疗中可能更具有前景。
严志颖, 毛逸锋, 朱颖蔚, 徐克群. 癌相关成纤维细胞的异质性在靶向胰腺癌治疗中的角色[J]. 国际肿瘤学杂志, 2021, 48(5): 308-312.
Yan Zhiying, Mao Yifeng, Zhu Yingwei, Xu Kequn. Role of heterogeneity of cancer-associated fibroblasts in targeted therapy of pancreatic cancer[J]. Journal of International Oncology, 2021, 48(5): 308-312.
| [1] |  
											  Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer[J]. Lancet, 2016,388(10039):73-85. DOI: 10.1016/S0140-6736(16)00141-0. 
											 												 doi: 10.1016/S0140-6736(16)00141-0 pmid: 26830752  | 
										
| [2] |  
											  Tian C, Clauser KR, Öhlund D, et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells[J]. Proc Natl Acad Sci U S A, 2019,116(39):19609-19618. DOI: 10.1073/pnas.1908626116. 
											 												 doi: 10.1073/pnas.1908626116  | 
										
| [3] |  
											  Neesse A, Bauer CA, Öhlund D, et al. Stromal biology and therapy in pancreatic cancer: ready for clinical translation?[J]. Gut, 2019,68(1):159-171. DOI: 10.1136/gutjnl-2018-316451. 
											 												 doi: 10.1136/gutjnl-2018-316451  | 
										
| [4] |  
											  Özdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival[J]. Cancer Cell, 2015,28(6):831-833. DOI: 10.1016/j.ccell.2015.11.002. 
											 												 doi: S1535-6108(15)00423-7 pmid: 28843279  | 
										
| [5] |  
											  Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2014,25(6):735-747. DOI: 10.1016/j.ccr.2014.04.021. 
											 												 doi: 10.1016/j.ccr.2014.04.021  | 
										
| [6] |  
											  Neuzillet C, Tijeras-Raballand A, Ragulan C, et al. Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma[J]. J Pathol, 2019,248(1):51-65. DOI: 10.1002/path.5224. 
											 												 doi: 10.1002/path.2019.248.issue-1  | 
										
| [7] |  
											  Arina A, Idel C, Hyjek EM, et al. Tumor-associated fibroblasts predominantly come from local and not circulating precursors[J]. Proc Natl Acad Sci U S A, 2016,113(27):7551-7556. DOI: 10.1073/pnas.1600363113. 
											 												 doi: 10.1073/pnas.1600363113  | 
										
| [8] |  
											  Biffi G, Oni TE, Spielman B, et al. IL1-induced JAK/STAT signaling is antagonized by TGF-β to shape CAF heterogeneity in pancreatic ductal adenocarcinoma[J]. Cancer Discov, 2019,9(2):282-301. DOI: 10.1158/2159-8290.CD-18-0710. 
											 												 doi: 10.1158/2159-8290.CD-18-0710  | 
										
| [9] |  
											  Wörmann SM, Song L, Ai J, et al. Loss of P53 function activates JAK2-STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival[J]. Gastroenterology, 2016,151(1):180-193. DOI: 10.1053/j.gastro.2016.03.010. 
											 												 doi: 10.1053/j.gastro.2016.03.010 pmid: 27003603  | 
										
| [10] |  
											  Novo D, Heath N, Mitchell L, et al. Mutant p53s generate proinvasive niches by influencing exosome podocalyxin levels[J]. Nat Commun, 2018,9(1):5069. DOI: 10.1038/s41467-018-07339-y. 
											 												 doi: 10.1038/s41467-018-07339-y  | 
										
| [11] |  
											  Vennin C, Mélénec P, Rouet R, et al. CAF hierarchy driven by pancreatic cancer cell p53-status creates a prometastatic and chemoresistant environment via perlecan[J]. Nat Commun, 2019,10(1):3637. DOI: 10.1038/s41467-019-10968-6. 
											 												 doi: 10.1038/s41467-019-10968-6  | 
										
| [12] |  
											  Pidsley R, Lawrence MG, Zotenko E, et al. Enduring epigenetic landmarks define the cancer microenvironment[J]. Genome Res, 2018,28(5):625-638. DOI: 10.1101/gr.229070.117. 
											 												 doi: 10.1101/gr.229070.117  | 
										
| [13] |  
											  Xiao Q, Zhou D, Rucki AA, et al. Cancer-associated fibroblasts in pancreatic cancer are reprogrammed by tumorinduced alterations in genomic DNA methylation[J]. Cancer Res, 2016,76(18):5395-5404. DOI: 10.1158/0008-5472.CAN-15-3264. 
											 												 doi: 10.1158/0008-5472.CAN-15-3264  | 
										
| [14] |  
											  Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017,214(3):579-596. DOI: 10.1084/jem.20162024. 
											 												 doi: 10.1084/jem.20162024  | 
										
| [15] |  
											  Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019,9(8):1102-1123. DOI: 10.1158/2159-8290.CD-19-0094. 
											 												 doi: 10.1158/2159-8290.CD-19-0094 pmid: 31197017  | 
										
| [16] |  
											  Shan T, Lu H, Ji H, et al. Loss of stromal caveolin-1 expression: a novel tumor microenvironment biomarker that can predict poor clinical outcomes for pancreatic cancer[J]. PLoS One, 2014,9(6):e97239. DOI: 10.1371/journal.pone.0097239. 
											 												 doi: 10.1371/journal.pone.0097239  | 
										
| [17] |  
											  Maruggi M, Layng FI, Lemos R Jr, et al. Absence of HIF1A leads to glycogen accumulation and an inflammatory response that enables pancreatic tumor growth[J]. Cancer Res, 2019,79(22):5839-5848. DOI: 10.1158/0008-5472.CAN-18-2994. 
											 												 doi: 10.1158/0008-5472.CAN-18-2994  | 
										
| [18] |  
											  Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2013,110(50):20212-20217. DOI: 10.1073/pnas.1320318110. 
											 												 doi: 10.1073/pnas.1320318110  | 
										
| [19] |  
											  Lo A, Wang LS, Scholler J, et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells[J]. Cancer Res, 2015,75(14):2800-2810. DOI: 10.1158/0008-5472.CAN-14-3041. 
											 												 doi: 10.1158/0008-5472.CAN-14-3041  | 
										
| [20] |  
											  Su S, Chen J, Yao H, et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness[J]. Cell, 2018,172(4):841-856. DOI: 10.1016/j.cell.2018.01.009. 
											 												 doi: 10.1016/j.cell.2018.01.009  | 
										
| [21] |  
											  Han X, Li Y, Xu Y, et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem[J]. Nat Commun, 2018,9(1):3390. DOI: 10.1038/s41467-018-05906-x. 
											 												 doi: 10.1038/s41467-018-05906-x  | 
										
| [22] |  
											  Sherman MH, Yu RT, Engle DD, et al. Vitamin D receptormedia-ted stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy[J]. Cell, 2014,159(1):80-93. DOI: 10.1016/j.cell.2014.08.007. 
											 												 doi: S0092-8674(14)01033-2 pmid: 25259922  | 
										
| [23] |  
											  Dauer P, Zhao X, Gupta VK, et al. Inactivation of cancerassocia-ted-fibroblasts disrupts oncogenic signaling in pancreatic cancer cells and promotes its regression[J]. Cancer Res, 2018,78(5):1321-1333. DOI: 10.1158/0008-5472.CAN-17-2320. 
											 												 doi: 10.1158/0008-5472.CAN-17-2320  | 
										
| [24] |  
											  Schnittert J, Heinrich MA, Kuninty PR, et al. Reprogramming tumor stroma using an endogenous lipid lipoxin A4 to treat pancreatic cancer[J]. Cancer Lett, 2018,420:247-258. DOI: 10.1016/j.canlet.2018.01.072. 
											 												 doi: 10.1016/j.canlet.2018.01.072  | 
										
| [25] |  
											  Djurec M, Graña O, Lee A, et al. Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors[J]. Proc Natl Acad Sci U S A, 2018,115(6):E1147-E1156. DOI: 10.1073/pnas.1717802115. 
											 												 doi: 10.1073/pnas.1717802115  | 
										
| [26] |  
											  Whatcott CJ, Ng S, Barrett MT, et al. Inhibition of ROCK1 kinase modulates both tumor cells and stromal fibroblasts in pancreatic can-cer[J]. PLoS One, 2017,12(8):e0183871. DOI: 10.1371/journal.pone.0183871. 
											 												 doi: 10.1371/journal.pone.0183871  | 
										
| [27] |  
											  Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer[J]. Nat Rev Clin Oncol, 2018,15(4):234-248. DOI: 10.1038/nrclinonc.2018.8. 
											 												 doi: 10.1038/nrclinonc.2018.8 pmid: 29405201  | 
										
| [28] |  
											  Shi Y, Gao W, Lytle NK, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring[J]. Nature, 2019,569(7754):131-135. DOI: 10.1038/s41586-019-1130-6. 
											 												 doi: 10.1038/s41586-019-1130-6 pmid: 30996350  | 
										
| [29] |  
											  Pinho AV, Van Bulck M, Chantrill L, et al. ROBO2 is a stroma suppressor gene in the pancreas and acts via TGF-β signalling[J]. Nat Commun, 2018,9(1):5083. DOI: 10.1038/s41467-018-07497-z. 
											 												 doi: 10.1038/s41467-018-07497-z  | 
										
| [30] |  
											  Yang Y, Andersson P, Hosaka K, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages[J]. Nat Commun, 2016,7:11385. DOI: 10.1038/ncomms11385. 
											 												 doi: 10.1038/ncomms11385  | 
										
| [31] |  
											  Steele CW, Karim SA, Leach JDG, et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2016,29(6):832-845. DOI: 10.1016/j.ccell.2016.04.014. 
											 												 doi: S1535-6108(16)30203-3 pmid: 27265504  | 
										
| [32] |  
											  Duluc C, Moatassim-Billah S, Chalabi-Dchar M, et al. Pharmacological targeting of the protein synjournal mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance[J]. EMBO Mol Med, 2015,7(6):735-753. DOI: 10.15252/emmm.201404346. 
											 												 doi: 10.15252/emmm.201404346  | 
										
| [33] |  
											  Ko AH, LoConte N, Tempero MA, et al. A Phase Ⅰ study of FOLFIRINOX plus IPI-926, a Hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma[J]. Pancreas, 2016,45(3):370-375. DOI: 10.1097/MPA.0000000000000458. 
											 												 doi: 10.1097/MPA.0000000000000458  | 
										
| [34] | Hingorani SR, Zheng L, Bullock AJ, et al. HALO 202: randomized phase Ⅱ study of PEGPH20 plus nabpaclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma[J]. J Clin Oncol, 2018,36(4):359-366. DOI: 10.1200/JCO.2017.74.9564. | 
| [35] |  
											  Miller BW, Morton JP, Pinese M, et al. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy[J]. EMBO Mol Med, 2015,7(8):1063-1076. DOI: 10.15252/emmm.201404827. 
											 												 doi: 10.15252/emmm.201404827 pmid: 26077591  | 
										
| [1] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. | 
| [2] | 傅旖, 马辰莺, 张露, 周菊英. 生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. | 
| [3] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. | 
| [4] | 张洁, 范玲, 李杰, 温华, 苏媛媛, 路宁, 张明鑫. 原发性胰腺淋巴瘤1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 316-320. | 
| [5] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. | 
| [6] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. | 
| [7] | 马正红, 姜超. 非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. | 
| [8] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰. 髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. | 
| [9] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. | 
| [10] | 黄辉, 丁江华. 靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. | 
| [11] | 李开春, 丁昌利, 于文艳. 安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. | 
| [12] | 陈秋, 王雷, 王明琦, 张梅. 恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. | 
| [13] | 李青珊, 谢鑫, 张楠, 刘帅. 放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. | 
| [14] | 刘利, 朱思齐, 孙梦颖, 何敬东. PARP抑制剂在小细胞肺癌靶向治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(6): 368-372. | 
| [15] | 刘博翰, 黄俊星. 溶质载体SLC7A5及SLC7A11基因在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 280-284. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||