
国际肿瘤学杂志 ›› 2020, Vol. 47 ›› Issue (9): 546-549.doi: 10.3760/cma.j.cn371439-20200527-00075
收稿日期:2020-05-27
									
				
											修回日期:2020-07-09
									
				
									
				
											出版日期:2020-09-08
									
				
											发布日期:2020-10-27
									
			通讯作者:
					柏雪莲
											E-mail:xuelianbai99@163.com
												基金资助:
        
               		Yan Bingfang, Meng Wei, Bai Xuelian(
)
			  
			
			
			
                
        
    
Received:2020-05-27
									
				
											Revised:2020-07-09
									
				
									
				
											Online:2020-09-08
									
				
											Published:2020-10-27
									
			Contact:
					Bai Xuelian   
											E-mail:xuelianbai99@163.com
												Supported by:摘要:
天冬酰胺内肽酶Legumain是半胱氨酸蛋白酶C13家族的新成员,在体内发挥多方面的作用。近年来,研究发现Legumain在多种肿瘤组织中高表达,并通过多种机制促进肿瘤细胞的增殖、肿瘤的侵袭转移和血管生成等。对Legumain的深入研究将有利于阐明恶性肿瘤的发病及进展机制,为肿瘤靶向治疗提供新靶点。
颜丙芳, 孟玮, 柏雪莲. Legumain在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2020, 47(9): 546-549.
Yan Bingfang, Meng Wei, Bai Xuelian. Progress of Legumain in malignant tumors[J]. Journal of International Oncology, 2020, 47(9): 546-549.
| [1] |  
											  Kembhavi AA, Buttle DJ, Knight CG, et al. The two cysteine endopeptidases of legume seeds: purification and characterization by use of specific assays[J]. Arch Biochem Biophys, 1993,303(2):208-213. DOI: 10.1006/abbi.1993.1274. 
											 												 doi: 10.1006/abbi.1993.1274 pmid: 8512309  | 
										
| [2] |  
											  Liu C, Sun C, Huang H, et al. Overexpression of Legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy[J]. Cancer Res, 2003,63(11):2957-2964. DOI: 10.1097/00002820-200306000-00012. 
											 												 pmid: 12782603  | 
										
| [3] |  
											  Dall E, Brandstetter H. Structure and function of Legumain in health and disease[J]. Biochimie, 2016,122:126-150. DOI: 10.1016/j.biochi.2015.09.022. 
											 												 doi: 10.1016/j.biochi.2015.09.022 pmid: 26403494  | 
										
| [4] |  
											  Lunde NN, Haugen MH, Bodin Larsen KB, et al. Glycosylation is important for Legumain localization and processing to active forms but not for cystatin E/M inhibitory functions[J]. Biochimie, 2017,139:27-37. DOI: 10.1016/j.biochi.2017.05.009. 
											 												 doi: 10.1016/j.biochi.2017.05.009 pmid: 28528272  | 
										
| [5] |  
											  Lin S, Li T, Xie P, et al. Targeted delivery of doxorubicin to tumour tissues by a novel Legumain sensitive polygonal nanogel[J]. Nanoscale, 2016,8(43):18400-18411. DOI: 10.1039/c6nr05870a. 
											 												 doi: 10.1039/c6nr05870a pmid: 27774557  | 
										
| [6] |  
											  Jafari A, Qanie D, Andersen TL, et al. Legumain regulates differentiation fate of human bone marrow stromal cells and is altered in postmenopausal osteoporosis[J]. Stem Cell Reports, 2017,8(2):373-386. DOI: 10.1016/j.stemcr.2017.01.003. 
											 												 doi: 10.1016/j.stemcr.2017.01.003 pmid: 28162997  | 
										
| [7] |  
											  Hasegawa S, Inoue D, Yamasaki M, et al. Site-specific cleavage of acetoacetyl-CoA synthetase by Legumain[J]. FEBS Lett, 2016,590(11):1592-1601. DOI: 10.1002/1873-3468.12197. 
											 												 doi: 10.1002/1873-3468.12197 pmid: 27129883  | 
										
| [8] |  
											  Anderson BM, de Almeida LGN, Sekhon H, et al. N-terminomics/TAILS profiling of macrophages after chemical inhibition of Legumain[J]. Biochemistry, 2019,59(3):329-340. DOI: 10.1021/acs.biochem.9b00821. 
											 												 doi: 10.1021/acs.biochem.9b00821 pmid: 31774660  | 
										
| [9] |  
											  Wang D, Xiong M, Chen C, et al. Legumain, an asparaginyl endopeptidase, mediates the effect of M2 macrophages on attenuating renal interstitial fibrosis in obstructive nephropathy[J]. Kidney Int, 2018,94(1):91-101. DOI: 10.1016/j.kint.2017.12.025. 
											 												 doi: 10.1016/j.kint.2017.12.025 pmid: 29656902  | 
										
| [10] |  
											  Meng F, Liu W. Knockdown of Legumain suppresses cervical cancer cell migration and invasion[J]. Oncol Res, 2016,23(1):7-12. DOI: 10.3727/096504015X14410238486649. 
											 												 doi: 10.3727/096504015X14410238486649 pmid: 29021015  | 
										
| [11] |  
											  Wu T, Sun L, Wu Y, et al. Prognostic value of Legumain in uveal melanoma[J]. Mol Med Rep, 2016,13(3):2377-2384. DOI: 10.3892/mmr.2016.4838. 
											 												 doi: 10.3892/mmr.2016.4838 pmid: 26846877  | 
										
| [12] |  
											  Haugen MH, Boye K, Nesland JM, et al. High expression of the cysteine proteinase Legumain in colorectal cancer-implications for therapeutic targeting[J]. Eur J Cancer, 2015,51(1):9-17. DOI: 10.1016/j.ejca.2014.10.020. 
											 												 doi: 10.1016/j.ejca.2014.10.020 pmid: 25466510  | 
										
| [13] |  
											  Wang H, Chen B, Lin Y, et al. Legumain promotes gastric cancer progression through tumor-associated macrophages in vitro and in vivo[J]. Int J Biol Sci, 2020,16(1):172-180. DOI: 10.7150/ijbs.36467. 
											 												 doi: 10.7150/ijbs.36467 pmid: 31892854  | 
										
| [14] |  
											  Luo M, Li Q, Wang D, et al. Fabrication of chitosan based nanocomposite with Legumain sensitive properties using charge driven self-assembly strategy[J]. J Mater Sci Mater Med, 2018,29(9):142. DOI: 10.1007/s10856-018-6149-y. 
											 												 doi: 10.1007/s10856-018-6149-y pmid: 30121849  | 
										
| [15] |  
											  Zhang M, Jiang Z, Chen S, et al. Legumain correlates with neuroblastoma differentiation and can be used in prodrug design[J]. Chem Biol Drug Des, 2018,91(2):534-544. DOI: 10.1111/cbdd.13116. 
											 												 doi: 10.1111/cbdd.13116 pmid: 28994241  | 
										
| [16] |  
											  Wang L, Chen S, Zhang MN, et al. Legumain: a biomarker for diagnosis and prognosis of human ovarian cancer[J]. J Cell Biochem, 2012,113(8):2679-2686. DOI: 10.1002/jcb.24143. 
											 												 doi: 10.1002/jcb.24143 pmid: 22441772  | 
										
| [17] | 杜祎祎. Legumain通过PI3K/AKT通路促进乳腺癌侵袭和转移的研究[D]. 天津: 天津医科大学, 2019. DOI: 10.27366/d.cnki.gtyku.2019.000313. | 
| [18] |  
											  Murthy RV, Arbman G, Gao J, et al. Legumain expression in relation to clinicopathologic and biological variables in colorectal cancer[J]. Clin Cancer Res, 2005,11(6):2293-2299. DOI: 10.1158/1078-0432.ccr-04-1642. 
											 												 doi: 10.1158/1078-0432.CCR-04-1642 pmid: 15788679  | 
										
| [19] |  
											  Zhen Y, Chunlei G, Wenzhi S, et al. Clinicopathologic significance of Legumain overexpression in cancer: a systematic review and meta-analysis[J]. Sci Rep, 2015,5:16599. DOI: 10.1038/srep16599. 
											 												 doi: 10.1038/srep16599 pmid: 26607955  | 
										
| [20] |  
											  Toss MS, Miligy IM, Gorringe KL, et al. Legumain is an indepen-dent predictor for invasive recurrence in breast ductal carcinoma in situ[J]. Mod Pathol, 2019,32(5):639-649. DOI: 10.1038/s41379-018-0180-x. 
											 												 doi: 10.1038/s41379-018-0180-x pmid: 30429518  | 
										
| [21] |  
											  Shen L, Li H, Shi Y, et al. M2 tumour-associated macrophages contribute to tumour progression via Legumain remodelling the extracellular matrix in diffuse large B cell lymphoma[J]. Sci Rep, 2016,6:30347. DOI: 10.1038/srep30347. 
											 												 doi: 10.1038/srep30347 pmid: 27464733  | 
										
| [22] |  
											  Andrade V, Guerra M, Jardim C, et al. Nucleoplasmic calcium regulates cell proliferation through Legumain[J]. J Hepatol, 2011,55(3):626-635. DOI: 10.1016/j.jhep.2010.12.022. 
											 												 doi: 10.1016/j.jhep.2010.12.022 pmid: 21237226  | 
										
| [23] |  
											  Liu Y, Goswami RK, Liu C, et al. Chemically programmed bispecific antibody targeting Legumain protease and αvβ3 integrin mediates strong antitumor effects[J]. Mol Pharm, 2015,12(7):2544-2550. DOI: 10.1021/acs.molpharmaceut.5b00257. 
											 												 doi: 10.1021/acs.molpharmaceut.5b00257 pmid: 26024761  | 
										
| [24] |  
											  Cui Y, Wang Y, Li H, et al. Asparaginyl endopeptidase promotes the invasion and metastasis of gastric cancer through modulating epithelial-to-mesenchymal transition and analysis of their phosphorylation signaling pathways[J]. Oncotarget, 2016,7(23):34356-34370. DOI: 10.18632/oncotarget.8879. 
											 												 doi: 10.18632/oncotarget.8879 pmid: 27102302  | 
										
| [25] |  
											  Zhang Y, Wu YY, Jiang JN, et al. MiRNA-3978 regulates peritoneal gastric cancer metastasis by targeting Legumain[J]. Oncotarget, 2016,7(50):83223-83230. DOI: 10.18632/oncotarget.12917. 
											 												 doi: 10.18632/oncotarget.12917 pmid: 27793040  | 
										
| [26] |  
											  Yamane T, Murao S, Kato-Ose I, et al. Transcriptional regulation of the legumain gene by p53 in HCT116 cells[J]. Biochem Biophys Res Commun, 2013,438(4):613-618. DOI: 10.1016/j.bbrc.2013.08.007. 
											 												 doi: 10.1016/j.bbrc.2013.08.007 pmid: 23942113  | 
										
| [27] |  
											  Yamane T, Yamamoto Y, Nakano Y, et al. Expression and protease activity of mouse Legumain are regulated by the oncogene/transcription co-activator, DJ-1 through p53 and cleavage of annexin A2 is increased in DJ-1-knockout cells[J]. Biochem Biophys Res Commun, 2015,467(3):472-477. DOI: 10.1016/j.bbrc.2015.10.032. 
											 												 doi: 10.1016/j.bbrc.2015.10.032 pmid: 26462467  | 
										
| [28] |  
											  Yamane T, Kato-Ose I, Sakamoto T, et al. Secretion of Legumain increases in conditioned medium from DJ-1-knockout cells and in serum from DJ-1-knockout mice[J]. Open Biochem J, 2018,12:29-35. DOI: 10.2174/1874091X01812010029. 
											 												 doi: 10.2174/1874091X01812010029 pmid: 29541256  | 
										
| [29] |  
											  Rawlings ND, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors[J]. Nucleic Acids Res, 2012,40:D343-D350. DOI: 10.1093/nar/gkt987. 
											 												 doi: 10.1093/nar/gkr987 pmid: 22086950  | 
										
| [30] |  
											  Yamane T, Kozuka M, Yamamoto Y, et al. Protease activity of Legumain is inhibited by an increase of cystatin E/M in the DJ-1-knockout mouse spleen, cerebrum and heart[J]. Biochem Biophys Rep, 2017,9:187-192. DOI: 10.1016/j.bbrep.2016.12.010. 
											 												 doi: 10.1016/j.bbrep.2016.12.010 pmid: 28956004  | 
										
| [31] |  
											  Lerchen HG, Stelte-Ludwig B, Berndt S, et al. Antibodye-prodrug conjugates with ksp inhibitors and Legumain-mediated metabolite formation[J]. Chemistry, 2019,25(35):8208-8213. DOI: 10.1002/chem.201900441. 
											 												 pmid: 30869180  | 
										
| [32] |  
											  Shi T, Gu L, Sun Y, et al. Enhanced Legumain-recognition and NIR controlled released of cisplatin-indocyanine nanosphere against gastric carcinoma[J]. Eur J Pharmacol, 2017,794:184-192. DOI: 10.1016/j.ejphar.2016.11.039. 
											 												 doi: 10.1016/j.ejphar.2016.11.039 pmid: 27894812  | 
										
| [33] |  
											  Li Y, Niu Y, Zhu J, et al. Tailor-made Legumain/pH dual-responsive doxorubicin prodrug-embedded nanoparticles for efficient anticancer drug delivery and in situ monitoring of drug release[J]. Nanoscale, 2020,12(4):2673-2685. DOI: 10.1039/c9nr08558k. 
											 												 doi: 10.1039/C9NR08558K pmid: 31942900  | 
										
| [34] |  
											  Eddie SL, Gregson A, Graham E, et al. Identification and SAR exploration of a novel series of Legumain inhibitors[J]. Bioorg Med Chem Lett, 2019,29(12):1546-1548. DOI: 10.1016/j.bmcl.2019.03.019. 
											 												 doi: 10.1016/j.bmcl.2019.03.019 pmid: 31005445  | 
										
| [35] |  
											  Li X, Liu Q, Ye S, et al. A protease-responsive fluorescent probe for sensitive imaging of Legumain activity in tumor cells[J]. Chem Biol Drug Des, 2019,94(2):1494-1503. DOI: 10.1111/cbdd.13530. 
											 												 doi: 10.1111/cbdd.13530 pmid: 31002467  | 
										
| [36] |  
											  Zhao Y, Hai Z, Wang H, et al. Legumain-specific near-infrared fluorescence “turn on” for tumor-targeted imaging[J]. Anal Chem, 2018,90(15):8732-8735. DOI: 10.1021/acs.analchem.8b02704. 
											 												 doi: 10.1021/acs.analchem.8b02704 pmid: 30027744  | 
										
| [1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. | 
| [2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. | 
| [3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. | 
| [4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. | 
| [5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. | 
| [6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. | 
| [7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. | 
| [8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. | 
| [9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. | 
| [10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. | 
| [11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. | 
| [12] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. | 
| [13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. | 
| [14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. | 
| [15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||