| [1] | 
																						 
											  Schaefer KN, Peifer M. Wnt/beta-catenin signaling regulation and a role for biomolecular condensates[J]. Dev Cell, 2019,48(4):429-444. DOI: 10.1016/j.devcel.2019.01.025. 
											 												 
																									doi: 10.1016/j.devcel.2019.01.025
																																					pmid: 30782412
																							 											 | 
										
																													
																						| [2] | 
																						 
											  Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors[J]. Cancer Treat Rev, 2018,62:50-60. DOI: 10.1016/j.ctrv.2017.11.002. 
											 												 
																																					pmid: 29169144
																							 											 | 
										
																													
																						| [3] | 
																						 
											  Feng M, Jin JQ, Xia L, et al. Pharmacological inhibition of β-catenin/BCL9 interaction overcomes resistance to immune checkpoint blockades by modulating Treg cells[J]. Sci Adv, 2019, 5(5): eaau5240. DOI: 10.1126/sciadv.aau5240. 
											 												 
																									doi: 10.1126/sciadv.aau5240
																																					pmid: 31086813
																							 											 | 
										
																													
																						| [4] | 
																						 
											  Zhang J, Tian XJ, Xing J. Signal transduction pathways of EMT induced by TGF-β, SHH, and WNT and their crosstalks[J]. J Clin Med, 2016,5(4):41. DOI: 10.3390/jcm5040041.
											 											 | 
										
																													
																						| [5] | 
																						 
											  Moor AE, Anderle P, Cantù C, et al. BCL9/9L-β-catenin signaling is associated with poor outcome in colorectal cancer[J]. EBioMedicine, 2015,2(12):1932-1943. DOI: 10.1016/j.ebiom.2015.10.030. 
											 												 
																									doi: 10.1016/j.ebiom.2015.10.030
																																					pmid: 26844272
																							 											 | 
										
																													
																						| [6] | 
																						 
											  Luo M, Hou L, Li J, et al. VEGF/NRP-1axis promotes progression of breast cancer via enhancement of epithelial-mesenchymal transition and activation of NF-κB and β-catenin[J]. Cancer Lett, 2016,373(1):1-11. DOI: 10.1016/j.canlet.2016.01.010. 
											 												 
																									doi: 10.1016/j.canlet.2016.01.010
																																					pmid: 26805761
																							 											 | 
										
																													
																						| [7] | 
																						 
											  Linke F, Harenberg M, Nietert MM, et al. Microenvironmental interactions between endothelial and lymphoma cells: a role for the cano-nical WNT pathway in Hodgkin lymphoma[J]. Leukemia, 2017,31(2):361-372. DOI: 10.1038/leu.2016.232. 
											 												 
																									doi: 10.1038/leu.2016.232
																																					pmid: 27535218
																							 											 | 
										
																													
																						| [8] | 
																						 
											  Pascual G, Avgustinova A, Mejetta S, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36[J]. Nature, 2017,541(7635):41-45. DOI: 10.1038/nature20791. 
											 												 
																																					pmid: 27974793
																							 											 | 
										
																													
																						| [9] | 
																						 
											  Schmitt M, Metzger M, Gradl D, et al. CD44 functions in Wnt signaling by regulating LRP6 localization and activation[J]. Cell Death Differ, 2015,22(4):677-689. DOI: 10.1038/cdd.2014.156. 
											 												 
																									doi: 10.1038/cdd.2014.156
																																					pmid: 25301071
																							 											 | 
										
																													
																						| [10] | 
																						 
											  Zhan T, Ambrosi G, Wandmacher AM, et al. MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer[J]. Nat Commun, 2019,10(1):2197. DOI: 10.1038/s41467-019-09898-0. 
											 												 
																									doi: 10.1038/s41467-019-09898-0
																																					pmid: 31097693
																							 											 | 
										
																													
																						| [11] | 
																						 
											  Gay DM, Ridgway RA, Müller M, et al. Loss of BCL9/9l sup-presses Wnt driven tumourigenesis in models that recapitulate human cancer[J]. Nat Commun, 2019,10(1):723. DOI: 10.1038/s41467-019-08586-3. 
											 												 
																									doi: 10.1038/s41467-019-08586-3
																																					pmid: 30760720
																							 											 | 
										
																													
																						| [12] | 
																						 
											  Elsarraj HS, Hong Y, Valdez KE, et al. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion[J]. Breast Cancer Res, 2015,17:128. DOI: 10.1186/s13058-015-0630-z. 
											 												 
																									doi: 10.1186/s13058-015-0630-z
																																					pmid: 26384318
																							 											 | 
										
																													
																						| [13] | 
																						 
											  Madani SH, Payandeh M, Sadeghi M, et al. The correlation between Ki-67 with other prognostic factors in breast cancer: a study in Iranian patients[J]. Indian J Med Paediatr Oncol, 2016,37(2):95-99. DOI: 10.4103/0971-5851.180136. 
											 												 
																									doi: 10.4103/0971-5851.180136
																																					pmid: 27168707
																							 											 | 
										
																													
																						| [14] | 
																						 
											  Jiang M, Kang Y, Sewastianik T, et al. BCL9 provides multi-cellular communication properties in colorectal cancer by interacting with paraspeckle proteins[J]. Nat Commun, 2020,11(1):19. DOI: 10.1038/s41467-019-13842-7. 
											 												 
																									doi: 10.1038/s41467-019-13842-7
																																					pmid: 31911584
																							 											 | 
										
																													
																						| [15] | 
																						 
											 Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma[J]. Cell, 2017, 169(7): 1327-1341. e1323. DOI: 10.1016/j.cell.2017.05.046.
											 											 | 
										
																													
																						| [16] | 
																						 
											  Huge N, Sandbothe M, Schröder AK, et al. Wnt status-dependent oncogenic role of BCL9 and BCL9L in hepatocellular carcinoma[J]. Hepatol Int, 2020,14(3):373-384. DOI: 10.1007/s12072-019-09977-w. 
											 												 
																									doi: 10.1007/s12072-019-09977-w
																																					pmid: 31440992
																							 											 | 
										
																													
																						| [17] | 
																						 
											  Xu W, Zhou W, Cheng M, et al. Hypoxia activates Wnt/β-catenin signaling by regulating the expression of BCL9 in human hepatocel-lular carcinoma[J]. Sci Rep, 2017,7:40446. DOI: 10.1038/srep40446. 
											 												 
																									doi: 10.1038/srep40446
																																					pmid: 28074862
																							 											 | 
										
																													
																						| [18] | 
																						 
											  Cai J, Fang L, Huang Y, et al. Simultaneous overactivation of Wnt/β-catenin and TGFβ signalling by miR-128-3p confers chemoresistance-associated metastasis in NSCLC[J]. Nat Commun, 2017,8:15870. DOI: 10.1038/ncomms15870. 
											 												 
																									doi: 10.1038/ncomms15870
																																					pmid: 28627514
																							 											 | 
										
																													
																						| [19] | 
																						 
											  Zhang Y, Zhang Q, Chen H, et al. BCL9 promotes epithelial mesenchymal transition and invasion in cisplatin resistant NSCLC cells via β-catenin pathway[J]. Life Sci, 2018,208:284-294. DOI: 10.1016/j.lfs.2018.07.023. 
											 												 
																									doi: 10.1016/j.lfs.2018.07.023
																																					pmid: 30009824
																							 											 | 
										
																													
																						| [20] | 
																						 
											  Mita MM, Becerra C, Richards DA, et al. Phase 1b study of WNT inhibitor vantictumab (VAN, human monoclonal antibody) with paclitaxel (P) in patients (pts) with 1st- to 3rd-line metastatic HER2-negative breast cancer (BC) [J]. J Clin Oncol, 2016,34(15_suppl):2516. DOI: 10.1200/JCO.2016.34.15_suppl.2516. 
											 												 
																									doi: 10.1200/JCO.2015.66.0787
																																			 											 | 
										
																													
																						| [21] | 
																						 
											  Le PN, McDermott JD, Jimeno A. Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28[J]. Pharmacol Ther, 2015,146:1-11. DOI: 10.1016/j.pharmthera.2014.08.005. 
											 												 
																									doi: 10.1016/j.pharmthera.2014.08.005
																																					pmid: 25172549
																							 											 | 
										
																													
																						| [22] | 
																						 
											  Moore KN, Gunderson CC, Sabbatini P, et al. A phase 1b dose escalation study of ipafricept (OMP54F28) in combination with paclitaxel and carboplatin in patients with recurrent platinum-sensitive ovarian cancer[J]. Gynecol Oncol, 2019,154(2):294-301. DOI: 10.1016/j.ygyno.2019.04.001. 
											 												 
																									doi: 10.1016/j.ygyno.2019.04.001
																																					pmid: 31174889
																							 											 | 
										
																													
																						| [23] | 
																						 
											  Mariotti L, Pollock K, Guettler S. Regulation of Wnt/β-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding[J]. Br J Pharmacol, 2017,174(24):4611-4636. DOI: 10.1111/bph.14038. 
											 												 
																									doi: 10.1111/bph.14038
																																					pmid: 28910490
																							 											 | 
										
																													
																						| [24] | 
																						 
											  Arqués O, Chicote I, Puig I, et al. Tankyrase inhibition blocks Wnt/β-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer[J]. Clin Cancer Res, 2016,22(3):644-656. DOI: 10.1158/1078-0432.CCR-14-3081. 
											 												 
																									doi: 10.1158/1078-0432.CCR-14-3081
																																					pmid: 26224873
																							 											 | 
										
																													
																						| [25] | 
																						 
											  Fang L, Zhu Q, Neuenschwander M, et al. A small-molecule ant-agonist of the β-Catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis[J]. Cancer Res, 2016,76(4):891-901. DOI: 10.1158/0008-5472.CAN-15-1519. 
											 												 
																									doi: 10.1158/0008-5472.CAN-15-1519
																																					pmid: 26645562
																							 											 | 
										
																													
																						| [26] | 
																						 
											  Hwang SY, Deng X, Byun S, et al. Direct targeting of β-catenin by a small molecule stimulates proteasomal degradation and suppresses oncogenic Wnt/β-catenin signaling[J]. Cell Rep, 2016,16(1):28-36. DOI: 10.1016/j.celrep.2016.05.071. 
											 												 
																									doi: 10.1016/j.celrep.2016.05.071
																																					pmid: 27320923
																							 											 |