[1] Reck M, RodriguezAbreu D, Robinson AG, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater[J]. J Clin Oncol, 2019, 37(7): 537-546. DOI: 10.1200/JCO.18.00149.
[2] Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC[J]. N Engl J Med, 2018, 378(24): 2288-2301. DOI: 10.1056/NEJMoa1716948.
[3] Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 5.2017, NCCN Clinical Practice Guidelines in oncology[J]. J Natl Compr Canc Netw, 2017, 15(4): 504-535.
[4] Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial[J]. Lancet, 2019, 393(10183): 1819-1830. DOI: 10.1016/S0140-6736(18)32409-7.
[5] Peng J, Hamanishi J, Matsumura N, et al. Chemotherapy induces programmed cell death-ligand overexpression via the nuclear factor-κB to foster an immunosuppressive tumor microenvironment in ovarian cancer[J]. Cancer Res, 2015, 75(23): 5034-5045. DOI: 10.1158/0008-5472.CAN-14-3098.
[6] PazAres L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer[J]. N Engl J Med, 2018, 379(21): 2040-2051. DOI: 10.1056/NEJMoa1810865.
[7] Ko HJ, Kim YJ, Kim YS, et al. A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model[J]. Cancer Res, 2007, 67(15): 7477-7486. DOI: 10.1158/0008-5472.CAN-06-4639.
[8] Lesterhuis WJ, Salmons J, Nowak AK, et al. Synergistic effect of CTLA-4 blockade and cancer chemotherapy in the induction of anti-tumor immunity[J]. PLoS One, 2013, 8(4): e61895. DOI: 10.1371/journal.pone.0061895.
[9] 刘莉, 姚军霞, 丁乾, 等. 非霍奇金淋巴瘤患者外周血CD4+CD25high调节性T细胞研究[J]. 中国实验血液学杂志, 2006, 14(1): 199-122.
[10] Terme M, Tanchot C. Immune system and tumors[J]. Ann Pathol, 2017, 37(1): 11-17. DOI: 10.1016/j.annpat.2016.12.004.
[11] Rao S, Gharib K, Han A. Cancer immunesurveillance by T cells[J]. Int Rev Cell Mol Biol, 2019, 342: 149-173. DOI: 10.1016/bs.ircmb.2018.08.001.
[12] Liang Y, Lü W, Zhang X, et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes before and after neoadjuvant chemotherapy in cervical cancer[J]. Diagn Pathol, 2018, 13(1): 93. DOI: 10.1186/s13000-018-0770-4.
[13] Park JH, Jang M, Tarhan YE, et al. Clonal expansion of antitumor T cells in breast cancer correlates with response to neoadjuvant chemotherapy[J]. Int J Oncol, 2016, 49(2): 471-478. DOI: 10.3892/ijo.2016.3540.
[14] Muranski P, Boni A, Wrzesinski C, et al. Increased intensity lymphodepletion and adoptive immunotherapy-how far we can go?[J]. Nat Clin Pract Oncol, 2006, 3(12): 668-681. DOI: 10.1038/ncponc0666.
[15] Sun NY, Chen YL, Lin HW, et al. Immune checkpoint Ab enhances the antigen-specific anti-tumor effects by modulating both dendritic cells and regulatory T lymphocytes[J]. Cancer Lett, 2019, 444: 20-34. DOI: 10.1016/j.canlet.2018.11.039.
[16] Zeng Y, Li B, Liang Y, et al. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment[J]. FASEB J, 2019, 33(5): 6596-6608. DOI: 10.1096/fj.201802067RR.
[17] Chen K, Huang HT, Hang WJ, et al. Effects of lung cancer cell-associated B7-H1 on T-cell proliferation in vitro and in vivo[J]. Braz J Med Biol Res, 2016, 49(7). pii: S0100-879X2016000700701. DOI: 10.1590/1414-431X20165263.
[18] Chen YL, Chang MC, Chen CA, et al. Depletion of regulatory T lymphocytes reverses the imbalance between pro-and anti-tumor immunities via enhancing antigen-specific T cell immune responses[J]. PLoS One, 2012, 7(10): e47190. DOI: 10.1371/journal.pone.0047190. |