[1] Masoud GN, Li W. HIF1alpha pathway: role, regulation and
intervention for cancer therapy[J]. Acta pharmaceutica Sinica B, 2015, 5
(5): 378-389. DOI: 10.1016/j.apsb.2015.05.007.
[2] Gregersen LH, Jacobsen A, Frankel LB, et al. MicroRNA143
downregulates Hexokinase 2 in colon cancer cells[J]. BMC Cancer, 2012,
12: 232. DOI: 10.1186/1471240712232.
[3] Yoshino H, Enokida H, Itesako T, et al. Tumorsuppressive microRNA
143/145 cluster targets hexokinase2 in renal cell carcinoma[J].
Cancer Sci, 2013, 104(12): 1567-1574. DOI: 10.1111/cas.12280.
[4] Jiang S, Zhang LF, Zhang HW, et al. A novel miR155/miR143 cascade
controls glycolysis by regulating hexokinase 2 in breast cancer cells[J].
EMBO J, 2012, 31(8): 1985-1998. DOI: 10.1038/emboj.2012.45.
[5] Zhang LF, Lou JT, Lu MH, et al. Suppression of miR199a maturation
by HuR is crucial for hypoxiainduced glycolytic Switch in hepatocellular
carcinoma[J]. EMBO J, 2015, 34(21): 2671-2685. DOI:
10.15252/embj.201591803.
[6] Li LQ, Yang Y, Chen H, et al. MicroRNA181b inhibits glycolysis in
gastric cancer cells via targeting hexokinase 2 gene[J]. Cancer Biomark,
2016, 17(1): 75-81. DOI: 10.3233/CBM160619.
[7] Wang Y, Yun Y, Wu B, et al. FOXM1 promotes reprogramming of glucose
metabolism in epithelial ovarian cancer cells via activation of GLUT1 and
HK2 transcription[J]. Oncotarget, 2016, In press. DOI:
10.18632/oncotarget.10103.
[8] Roberts DJ, Miyamoto S. Hexokinase Ⅱ integrates energy metabolism
and cellular protection: akting on mitochondria and TORCing to autophagy[J
]. Cell Death Differ, 2015, 22(2): 248-257. DOI: 10.1038/cdd.2014.173.
[9] Pantic B, Trevisan E, Citta A, et al. Myotonic dystrophy protein
kinase (DMPK) prevents ROSinduced cell death by assembling a hexokinase
ⅡSrc complex on the mitochondrial surface[J]. Cell Death Dis, 2013, 4:
e858. DOI: 10.1038/cddis.2013.385.
[10] Roberts DJ, TanSah VP, Ding EY, et al. HexokinaseⅡ positively
regulates glucose starvationinduced autophagy through TORC1 inhibition[J
]. Mol Cell, 2014, 53(4): 521-533. DOI: 10.1016/j.molcel.2013.12.019.
[11] Tan VP, Miyamoto S. HK2/hexokinaseⅡ integrates glycolysis and
autophagy to confer cellular protection[J]. Autophagy, 2015, 11(6): 963-
964. DOI: 10.1080/15548627.2015.1042195.
[12] Kim JE, Ahn BC, Hwang MH, et al. Combined RNA interference of
hexokinase Ⅱ and (131)Isodium iodide symporter gene therapy for
anaplastic thyroid carcinoma[J] . J Nucl Med, 2011, 52(11): 1756-1763.
DOI: 10.2967/jnumed.111.090266.
[13] Wolf A, Agnihotri S, Micallef J, et al. Hexokinase 2 is a key
mediator of aerobic glycolysis and promotes tumor growth in human
glioblastoma multiforme[J]. J Exp Med, 2011, 208(2): 313-326. DOI:
10.1084/jem.20101470.
[14] Patra KC, Wang Q, Bhaskar PT, et al. Hexokinase 2 is required for
tumor initiation and maintenance and its systemic deletion is therapeutic
in mouse models of cancer[J]. Cancer Cell, 2013, 24(2): 213-228. DOI:
10.1016/j.ccr.2013.06.014.
[15] Gong L, Wei Y, Yu X, et al. 3Bromopyruvic acid, a hexokinase Ⅱ
inhibitor, is an effective antitumor agent on the hepatoma cells: in vitro
and in vivo findings[J]. Anticancer Agents Med Chem, 2014, 14(5):
771-776.
[16] Buijs M, Wijlemans JW, Kwak BK, et al. Antiglycolytic therapy
combined with an imageguided minimally invasive delivery strategy for the
treatment of breast cancer[J]. J Vasc Interv Radiol, 2013, 24(5):
737-743. DOI: 10.1016/j.jvir.2013.01.013.
[17] Wicks RT, Azadi J, Mangraviti A, et al. Local delivery of
cancercell glycolytic inhibitors in highgrade glioma[J]. Neuro Oncol,
2015, 17(1): 70-80. DOI: 10.1093/neuonc/nou143.
[18] Krasnov GS, Dmitriev AA, Lakunina VA, et al. Targeting VDACbound
hexokinase Ⅱ: a promising approach for concomitant anticancer therapy[J
]. Expert Opin Ther Targets, 2013, 17(10): 1221-1233. DOI:
10.1517/14728222.2013.833607.
[19] Wintzell M, Lfstedt L, Johansson J, et al. Repeated cisplatin
treatment can lead to a multiresistant tumor cell population with stem cell
features and sensitivity to 3bromopyruvate[J]. Cancer Biol Ther, 2012,
13(14): 1454-1462. DOI: 10.4161/cbt.22007.
[20] Bean JF, Qiu YY, Yu S, et al. Glycolysis inhibition and its effect
in doxorubicin resistance in neuroblastoma[J]. J Pediatr Surg, 2014, 49
(6): 981-984; discussion 984. DOI: 10.1016/j.jpedsurg.2014.01.037.
[21] GarbutcheonSingh KB, Harper BW, Myers S, et al. Combination
studies of Platinum(Ⅱ)based metallointercalators with buthionineS, R
sulfoximine, 3bromopyruvate, cisplatin or carboplatin[J]. Metallomics,
2014, 6(1): 126-131. DOI: 10.1039/c3mt00191a.
[22] Marrache S, Dhar S. The energy blocker inside the power house:
mitochondria targeted delivery of 3bromopyruvate[J]. Chem Sci, 2015, 6
(3): 1832-1845.
[23] Zhang MX, Hua YJ, Wang HY, et al. Longterm prognostic implications
and therapeutic target role of hexokinase Ⅱ in patients with
nasopharyngeal carcinoma[J]. Oncotarget, 2016, 7(16): 21287-21297. DOI:
10.18632/oncotarget.7116.
[24] Kennedy CR, Tilkens SB, Guan H, et al. Differential sensitivities of
glioblastoma cell lines towards metabolic and signaling pathway inhibitions
[J]. Cancer Lett, 2013, 336(2): 299-306. DOI:
10.1016/j.canlet.2013.03.020.
[25] Cheong JH, Park ES, Liang J, et al. Dual inhibition of tumor energy
pathway by 2deoxyglucose and metformin is effective against a broad
spectrum of preclinical cancer models[J]. Mol Cancer Ther, 2011, 10(12):
2350-2362. DOI: 10.1158/15357163.MCT110497. |