[1] Meng X, Laidler LL, Kosmacek EA, et al. Induction of mitotic cell
death by overriding G2/M checkpoint in endometrial cancer cells with
nonfunctional p53[J]. Gynecol Oncol, 2013, 128(3): 461-469. DOI:
10.1016/j.ygyno.2012.11.004.
[2] Larsen DH, Stucki M. Nucleolar responses to DNA doublestrand breaks
[J]. Nucleic Acids Res, 2016, 44(2): 538544. DOI: 10.1093/nar/gkv1312.
[3] De Cicco M, Rahim MS, Dames SA. Regulation of the target of rapamycin
and other phosphatidylinositol 3kinaserelated kinases by membrane
targeting[J]. Membranes, 2015, 5(4): 553-575. DOI:
10.3390/membranes5040553.
[4] Malaquin N, CarrierLeclerc A, Dessureault M, et al. DDRmediated
crosstalk between DNAdamaged cells and their microenvironment[J]. Front
Genet, 2015, 6: 94. DOI: 10.3389/fgene.2015.00094.
[5] Siddiqui MS, Franois M, Fenech MF, et al. Persistent γH2AX: a
promising molecular marker of DNA damage and aging[J]. Mutat Res Rev
Mutat Res, 2015, 766: 1-19. DOI: 10.1016/j.mrrev.2015.07.001.
[6] Monsalve DM, CampilloMarcos I, Salzano M, et al. VRK1
phosphorylates and protects NBS1 from ubiquitination and proteasomal
degradation in response to DNA damage[J]. Biochim Biophys Acta, 2016,
1863(4): 760-769. DOI: 10.1016/j.bbamcr.2016.02.005.
[7] Khongkow P, Karunarathna U, Khongkow M, et al. FOXM1 targets NBS1 to
regulate DNA damageinduced senescence and epirubicin resistance[J].
Oncogene, 2014, 33(32): 4144-4155. DOI: 10.1038/onc.2013.457.
[8] Park S, Kang JM, Kim SJ, et al. Smad7 enhances ATM activity by
facilitating the interaction between ATM and Mre11Rad50Nbs1 complex in
DNA doublestrand break repair[J]. Cell Mol Life Sci, 2015, 72(3): 583-
596. DOI: 10.1007/s000180141687z.
[9] Liu XY, Zha S. ATMIN: a new tumor suppressor in developing B cells[J
]. Cancer Cell, 2011, 19(5): 569-570. DOI: 10.1016/j.ccr.2011.05.002.
[10] Loizou JI, Sancho R, Kanu N, et al. ATMIN is required for
maintenance of genomic stability and suppression of B cell lymphoma[J].
Cancer Cell, 2011, 19(5): 587-600. DOI: 10.1016/j.ccr.2011.03.022.
[11] Rizzo A, Salvati E, Porru M, et al. Stabilization of quadruplex DNA
perturbs telomere replication leading to the activation of an
ATRdependent ATM signaling pathway[J]. Nucleic Acids Res, 2009, 37(16):
5353-5364. DOI: 10.1093/nar/gkp582.
[12] Spagnolo L, Barbeau J, Curtin NJ, et al. Visualization of a
DNAPK/PARP1 complex[J]. Nucleic Acids Res, 2012, 40(9): 4168-4177.
DOI: 10.1093/nar/gkr1231.
[13] VidalEychenie S, Decaillet C, Basbous JA. DNA structurespecific
priming of ATR activation by DNAPK[J]. J Cell Biol, 2013, 202(3): 421-
429. DOI: 10.1083/jcb.201304139.
[14] Xue L, Yu D, Furusawa Y, et al. ATMdependent
hyperradiosensitivity in mammalian cells irradiated by heavy ions[J].
Int J Radiat Oncol Biol Phys, 2009, 75(1): 235-243. DOI:
10.1016/j.ijrobp.2009.04.088.
[15] Cui YX, Palii SS, Innes CL, et al. Depletion of ATR selectively
sensitizes ATMdeficient human mammary epithelial cells to ionizing
radiation and DNAdamaging agents[J]. Cell Cycle, 2014, 13(22):
3541-3550. DOI: 10.4161/15384101.2014.960729.
[16] Weber AM, Ryan AJ. ATM and ATR as therapeutic targets in cancer[J]
. Pharmacol Ther, 2015, 149: 124-138. DOI:
10.1016/j.pharmthera.2014.12.001.
[17] Wang XQ, Redpath JL, Fan ST, et al. ATR dependent activation of Chk2
[J]. J Cell Physiol, 2006, 208(3): 613-619. DOI: 10.1002/jcp.20700.
[18] Zhang J, Gao G, Chen L, et al. Hydrogen peroxide/ATRChk2
activation mediates p53 protein stabilization and anticancer activity of
cheliensisin a in human cancer cells[J]. Oncotarget, 2014, 5(3):
841-852.
[19] Niida H, Murata K, Shimada M, et al. Cooperative functions of Chk1
and Chk2 reduce tumour susceptibility in vivo[J]. EMBO J, 2010, 29(20):
3558-3570. DOI: 10.1038/emboj.2010.218.
[20] Manic G, Obrist F, Sistigu A, et al. Trial watch: targeting
ATMCHK2 and ATRCHK1 pathways for anticancer therapy[J]. Mol Cell
Oncol, 2015, 2(4): e1012976. DOI: 10.1080/23723556.2015.1012976.
[21] Lavecchia A, Di Giovanni C, Novellino E. CDC25 phosphatase
inhibitors: an update[J]. Mini Rev Med Chem, 2012, 12(1): 62-73.
[22] Wu YJ, Jan YJ, Ko BS, et al. Involvement of 1433 proteins in
regulating tumor progression of hepatocellular carcinoma[J]. Cancers
(Basel), 2015, 7(2): 1022-1036. DOI: 10.3390/cancers7020822.
[23] Agius E, BelVialar S, Bonnet F, et al. Cell cycle and cell fate in
the developing nervous system: the role of CDC25B phosphatase[J]. Cell
Tissue Res, 2015, 359(1): 201-213. DOI: 10.1007/s0044101419982.
[24] Vriend LE, De Witt Hamer PC, Van Noorden CJ, et al. WEE1 inhibition
and genomic instability in cancer[J]. Biochim Biophys Acta, 2013, 1836
(2): 227-235. DOI: 10.1016/j.bbcan.2013.05.002.
[25] Li S, Zhang Y, Xu W. Developments of pololike kinase 1 (Plk1)
inhibitors as anticancer agents[J]. Mini Rev Med Chem, 2013, 13(14):
2014-2025.
[26] Wang LM, Lv WW, Zuo D, et al. Characteristics of cyclin B and its
potential role in regulating oogenesis in the red claw crayfish (cherax
quadricarinatus)[J]. Genet Mol Res, 2015, 14(3): 10786-10798. DOI:
10.4238/2015.September.9.17. |