
国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (12): 795-800.doi: 10.3760/cma.j.cn371439-20250225-00136
• 综述 • 上一篇
收稿日期:2025-02-25
修回日期:2025-04-09
出版日期:2025-12-08
发布日期:2025-12-31
通讯作者:
郭智
E-mail:guozhi02@163.com
基金资助:Received:2025-02-25
Revised:2025-04-09
Online:2025-12-08
Published:2025-12-31
Contact:
Guo Zhi
E-mail:guozhi02@163.com
Supported by:摘要:
肿瘤微环境(TME)是一个由浸润细胞及其产物、细胞外基质和其他非细胞组织组成的复杂生态系统,淋巴瘤的发病机制涉及肿瘤细胞与TME间复杂的相互作用。尽管肿瘤形态学、免疫表型和分子特征是预测预后和指导治疗的公认因素,但随着对淋巴瘤生物学机制理解的不断深入,非肿瘤细胞微环境在其中的影响也变得越来越重要。因此,进一步探讨肿瘤发生中TME起关键作用的淋巴瘤亚型,以及针对非肿瘤细胞以及肿瘤细胞与非肿瘤细胞相互作用的新型疗法和组合治疗策略,可为淋巴瘤治疗提供独特的见解。
刘晓萱, 郭智. 肿瘤微环境与淋巴瘤治疗的研究进展[J]. 国际肿瘤学杂志, 2025, 52(12): 795-800.
Liu Xiaoxuan, Guo Zhi. Research advances in tumor microenvironment and lymphoma treatment[J]. Journal of International Oncology, 2025, 52(12): 795-800.
| [1] |
Khurana A, Ansell SM. Role of microenvironment in non-Hodgkin lymphoma: understanding the composition and biology[J]. Cancer J, 2020, 26(3): 206-216. DOI: 10.1097/PPO.0000000000000446.
pmid: 32496454 |
| [2] |
Wang L, Ding K, Zheng C, et al. Detachable nanoparticle-enhanced chemoimmunotherapy based on precise killing of tumor seeds and normalizing the growing soil strategy[J]. Nano Lett, 2020, 20(9): 6272-6280. DOI: 10.1021/acs.nanolett.0c01415.
pmid: 32787161 |
| [3] |
Fowler NH, Cheah CY, Gascoyne RD, et al. Role of the tumor microenvironment in mature B-cell lymphoid malignancies[J]. Haematologica, 2016, 101(5): 531-540. DOI: 10.3324/haematol.2015.139493.
pmid: 27132279 |
| [4] | Steidl C, Stevenson FK. Introduction to a review series on the influence of the tumor microenvironment on the pathogenesis of B-cell lymphomas[J]. Blood, 2024, 143(12): 1057-1058. DOI: 10.1182/blood.2023021003. |
| [5] |
Rudelius M, Rosenfeldt MT, Leich E, et al. Inhibition of focal adhesion kinase overcomes resistance of mantle cell lymphoma to ibrutinib in the bone marrow microenvironment[J]. Haematologica, 2018, 103(1): 116-125. DOI: 10.3324/haematol.2017.177162.
pmid: 29079592 |
| [6] |
Ciavarella S, Vegliante MC, Fabbri M, et al. Dissection of DLBCL microenvironment provides a gene expression-based predictor of survival applicable to formalin-fixed paraffin-embedded tissue[J]. Ann Oncol, 2018, 29(12): 2363-2370. DOI: 10.1093/annonc/mdy450.
pmid: 30307529 |
| [7] | Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in large-B-cell lymphomas[J]. N Engl J Med, 2008, 359(22): 2313-2323. DOI: 10.1056/NEJMoa0802885. |
| [8] |
Riihijärvi S, Fiskvik I, Taskinen M, et al. Prognostic influence of macrophages in patients with diffuse large B-cell lymphoma: a correlative study from a nordic phase Ⅱ trial[J]. Haematologica, 2015, 100(2): 238-245. DOI: 10.3324/haematol.2014.113472.
pmid: 25381134 |
| [9] |
Xu-Monette ZY, Xiao M, Au Q, et al. Immune profiling and quantitative analysis decipher the clinical role of immune-checkpoint expression in the tumor immune microenvironment of DLBCL[J]. Cancer Immunol Res, 2019, 7(4): 644-657. DOI: 10.1158/2326-6066.CIR-18-0439.
pmid: 30745366 |
| [10] |
Aoki T, Chong LC, Takata K, et al. Single-cell transcriptome analysis reveals disease-defining T-cell subsets in the tumor microenvironment of classic Hodgkin lymphoma[J]. Cancer Discov, 2020, 10(3): 406-421. DOI: 10.1158/2159-8290.CD-19-0680.
pmid: 31857391 |
| [11] |
Keane C, Law SC, Gould C, et al. LAG3: a novel immune checkpoint expressed by multiple lymphocyte subsets in diffuse large B-cell lymphoma[J]. Blood Adv, 2020, 4(7): 1367-1377. DOI: 10.1182/bloodadvances.2019001390.
pmid: 32267932 |
| [12] |
Nowakowski GS, Hong F, Scott DW, et al. Addition of lenalidomide to R-CHOP improves outcomes in newly diagnosed diffuse large B-cell lymphoma in a randomized phase Ⅱ US intergroup study ECOG-ACRIN E1412[J]. J Clin Oncol, 2021, 39(12): 1329-1338. DOI: 10.1200/JCO.20.01375.
pmid: 33555941 |
| [13] |
Younes A, Sehn LH, Johnson P, et al. Randomized phase Ⅲ trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non-germinal center B-cell diffuse large B-cell lymphoma[J]. J Clin Oncol, 2019, 37(15): 1285-1295. DOI: 10.1200/JCO.18.02403.
pmid: 30901302 |
| [14] |
Chen BJ, Dashnamoorthy R, Galera P, et al. The immune checkpoint molecules PD-1, PD-L1, TIM-3 and LAG-3 in diffuse large B-cell lymphoma[J]. Oncotarget, 2019, 10(21): 2030-2040. DOI: 10.18632/oncotarget.26771.
pmid: 31007846 |
| [15] | Huang R, Li X, He Y, et al. Recent advances in CAR-T cell engineering[J]. J Hematol Oncol, 2020, 13(1): 86. DOI: 10.1186/s13045-020-00910-5. |
| [16] | Lynn RC, Weber EW, Sotillo E, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance[J]. Nature, 2019, 576(7786): 293-300. DOI: 10.1038/s41586-019-1805-z. |
| [17] | Jain MD, Zhao H, Wang X, et al. Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma[J]. Blood, 2021, 137(19): 2621-2633. DOI: 10.1182/blood.2020007445. |
| [18] | Martín-Moreno AM, Roncador G, Maestre L, et al. CSF1R protein expression in reactive lymphoid tissues and lymphoma: its relevance in classical Hodgkin lymphoma[J]. PLoS One, 2015, 10(6): e0125203. DOI: 10.1371/journal.pone.0125203. |
| [19] |
Hsi ED, Li H, Nixon AB, et al. Serum levels of TARC, MDC, IL-10, and soluble CD163 in Hodgkin lymphoma: a SWOG S0816 correlative study[J]. Blood, 2019, 133(16): 1762-1765. DOI: 10. 1182/blood-2018-08-870915.
pmid: 30723079 |
| [20] |
Plattel WJ, van den Berg A, Visser L, et al. Plasma thymus and activation-regulated chemokine as an early response marker in classical Hodgkin's lymphoma[J]. Haematologica, 2012, 97(3): 410-415. DOI: 10.3324/haematol.2011.053199.
pmid: 22058214 |
| [21] |
Jachimowicz RD, Pieper L, Reinke S, et al. Whole-slide image analysis of the tumor microenvironment identifies low B-cell content as a predictor of adverse outcome in patients with advanced-stage classical Hodgkin lymphoma treated with BEACOPP[J]. Haematologica, 2021, 106(6): 1684-1692. DOI: 10.3324/haematol.2019.243287.
pmid: 32381573 |
| [22] |
Greaves P, Clear A, Coutinho R, et al. Expression of FOXP3, CD68, and CD20 at diagnosis in the microenvironment of classical Hodgkin lymphoma is predictive of outcome[J]. J Clin Oncol, 2013, 31(2): 256-262. DOI: 10.1200/JCO.2011.39.9881.
pmid: 23045593 |
| [23] | Romano A, Parrinello NL, Vetro C, et al. Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin lymphoma patients treated up-front with a risk-adapted strategy[J]. Br J Haematol, 2015, 168(5): 689-700. DOI: 10.1111/bjh.13198. |
| [24] |
Green MR, Rodig S, Juszczynski P, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy[J]. Clin Cancer Res, 2012, 18(6): 1611-1618. DOI: 10.1158/1078-0432.CCR-11-1942.
pmid: 22271878 |
| [25] | Armand P, Engert A, Younes A, et al. Lumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase Ⅱ CheckMate 205 trial[J]. Clin Oncol, 2018, 36(14): 1428-1439. DOI: 10.1200/JCO.2018.79.3547. |
| [26] |
Younes A, Santoro A, Shipp M, et al. Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial[J]. Lancet Oncol, 2016, 17(9): 1283-1294. DOI: 10.1016/S1470-2045(16)30167-X.
pmid: 27451390 |
| [27] |
Chen R, Zinzani PL, Lee HJ, et al. Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087[J]. Blood, 2019, 134(14): 1144-1153. DOI: 10.1182/blood.2019000324.
pmid: 31409671 |
| [28] |
Bröckelmann PJ, Goergen H, Keller U, et al. Efficacy of nivolumab and AVD in early-stage unfavorable classic hodgkin lymphoma: the randomized phase 2 German Hodgkin study group NIVAHL trial[J]. JAMA Oncol, 2020, 6(6): 872-880. DOI: 10.1001/jamaoncol.2020.0750.
pmid: 32352505 |
| [29] |
Patel SS, Weirather JL, Lipschitz M, et al. The microenvironmental niche in classic Hodgkin lymphoma is enriched for CTLA-4-positive T cells that are PD-1-negative[J]. Blood, 2019, 134(23): 2059-2069. DOI: 10.1182/blood.2019002206.
pmid: 31697809 |
| [30] |
Tuscano JM, Maverakis E, Groshen S, et al. A phase Ⅰ study of the combination of rituximab and ipilimumab in patients with relapsed/refractory B-cell lymphoma[J]. Clin Cancer Res, 2019, 25(23): 7004-7013. DOI: 10.1158/1078-0432.CCR-19-0438.
pmid: 31481504 |
| [31] |
Carreras J, Lopez-Guillermo A, Fox BC, et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma[J]. Blood, 2006, 108(9): 2957-2964. DOI: 10.1182/blood-2006-04-018218.
pmid: 16825494 |
| [32] | Tzankov A, Meier C, Hirschmann P, et al. Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma[J]. Haematologica, 2008, 93(2): 193-200. DOI: 10.3324/haematol.11702. |
| [33] |
Smeltzer JP, Jones JM, Ziesmer SC, et al. Pattern of CD14+ follicular dendritic cells and PD1+ T cells independently predicts time to transformation in follicular lymphoma[J]. Clin Cancer Res, 2014, 20(11): 2862-2872. DOI: 10.1158/1078-0432.CCR-13-2367.
pmid: 24727328 |
| [34] | Radtke AJ, Roschewski M. The follicular lymphoma tumor microenvironment at single-cell and spatial resolution[J]. Blood, 2024, 143(12): 1069-1079. DOI: 10.1182/blood.2023020999. |
| [35] |
Küppers R, Stevenson FK. Critical influences on the pathogenesis of follicular lymphoma[J]. Blood, 2018, 131(21): 2297-2306. DOI: 10.1182/blood-2017-11-764365.
pmid: 29666116 |
| [36] | Herrera AF. Noncellular immune therapies for non-Hodgkin lymphoma[J]. Hematol Oncol Clin North Am, 2019, 33(4): 707-725. DOI: 10.1016/j.hoc.2019.03.007. |
| [37] | Blaker YN, Spetalen S, Brodtkorb M, et al. The tumour microenvironment influences survival and time to transformation in follicular lymphoma in the rituximab era[J]. Br J Haematol, 2016, 175(1): 102-114. DOI: 10.1111/bjh.14201. |
| [38] | Gandhi AK, Kang J, Havens CG, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.)[J]. Br J Haematol, 2014, 164(6): 811-821. DOI: 10.1111/bjh.12708. |
| [39] | Menter T, Tzankov A, Zucca E, et al. Prognostic implications of the microenvironment for follicular lymphoma under immunomodulation therapy[J]. Br J Haematol, 2020, 189(4): 707-717. DOI: 10.1111/bjh.16414. |
| [40] |
Leonard JP, Trneny M, Izutsu K, et al. AUGMENT: a phase Ⅲ study of lenalidomide plus rituximab versus placebo plus rituximab in relapsed or refractory indolent lymphoma[J]. J Clin Oncol, 2019, 37(14): 1188-1199. DOI: 10.1200/JCO.19.00010.
pmid: 30897038 |
| [41] |
Gopal AK, Schuster SJ, Fowler NH, et al. Ibrutinib as treatment for patients with relapsed/refractory follicular lymphoma: results from the open-label, multicenter, phase Ⅱ DAWN study[J]. J Clin Oncol, 2018, 36(23): 2405-2412. DOI: 10.1200/JCO.2017.76.8853.
pmid: 29851546 |
| [42] |
Amin R, Mourcin F, Uhel F, et al. DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma[J]. Blood, 2015, 126(16): 1911-1920. DOI: 10.1182/blood-2015-04-640912.
pmid: 26272216 |
| [43] |
Serrat N, Guerrero-Hernández M, Matas-Céspedes A, et al. PI3Kδ inhibition reshapes follicular lymphoma-immune microenvironment cross talk and unleashes the activity of venetoclax[J]. Blood Adv, 2020, 4(17): 4217-4231. DOI: 10.1182/bloodadvances.2020001584.
pmid: 32898249 |
| [44] |
Balsas P, Palomero J, Eguileor Á, et al. SOX11 promotes tumor protective microenvironment interactions through CXCR4 and FAK regulation in mantle cell lymphoma[J]. Blood, 2017, 130(4): 501-513. DOI: 10.1182/blood-2017-04-776740.
pmid: 28533307 |
| [45] | Navarro A, Beà S, Jares P, et al. Molecular pathogenesis of mantle cell lymphoma[J]. Hematol Oncol Clin North Am, 2020, 34(5): 795-807. DOI: 10.1016/j.hoc.2020.05.002. |
| [46] | Laurent C, Dietrich S, Tarte K. Cell cross talk within the lymphoma tumor microenvironment: follicular lymphoma as a paradigm[J]. Blood, 2024, 143(12): 1080-1090. DOI: 10.1182/blood.2023021000. |
| [47] |
Song Y, Zhou K, Zou D, et al. Treatment of patients with relapsed or refractory mantle-cell lymphoma with zanubrutinib, a selective inhibitor of bruton's tyrosine kinase[J]. Clin Cancer Res, 2020, 26(16): 4216-4224. DOI: 10.1158/1078-0432.CCR-19-3703.
pmid: 32461234 |
| [48] |
Sugio T, Miyawaki K, Kato K, et al. Microenvironmental immune cell signatures dictate clinical outcomes for PTCL-NOS[J]. Blood Adv, 2018, 2(17): 2242-2252. DOI: 10.1182/bloodadvances.2018018754.
pmid: 30194138 |
| [49] | Kim S, Kwon D, Koh J, et al. Clinicopathological features of programmed cell death-1 and programmed cell death-ligand-1 expression in the tumor cells and tumor microenvironment of angioimmunoblastic T cell lymphoma and peripheral T cell lymphoma not otherwise specified[J]. Virchows Arch, 2020, 477(1): 131-142. DOI: 10.1007/s00428-020-02790-z. |
| [50] |
Phyo ZH, Shanbhag S, Rozati S. Update on biology of cutaneous T-cell lymphoma[J]. Front Oncol, 2020, 10: 765. DOI: 10.3389/fonc.2020.00765.
pmid: 32477957 |
| [51] |
Khodadoust MS, Rook AH, Porcu P, et al. Pembrolizumab in relapsed and refractory mycosis fungoides and sézary syndrome: a multicenter phase Ⅱ study[J]. J Clin Oncol, 2020, 38(1): 20-28. DOI: 10.1200/JCO.19.01056.
pmid: 31532724 |
| [1] | 刘美, 胡玉崇, 李凤桐, 朝乐门, 柳檬, 亢琳琳. SHCBP1在恶性肿瘤中的作用机制及临床研究进展[J]. 国际肿瘤学杂志, 2025, 52(9): 583-586. |
| [2] | 澈根, 乌日汗, 朱恬恬, 东丽. 非小细胞肺癌中cGAS-STING信号通路的作用机制及其靶向治疗策略[J]. 国际肿瘤学杂志, 2025, 52(9): 587-591. |
| [3] | 海亚楠, 鲍文芳, 申屠航笑, 陈敬德. dMMR/MSI-H转移性结直肠癌免疫治疗耐药机制及耐药后治疗进展[J]. 国际肿瘤学杂志, 2025, 52(9): 598-602. |
| [4] | 宋美娇, 张锡泉, 沈庆林. 原发灶不明的转移性癌1例并文献复习[J]. 国际肿瘤学杂志, 2025, 52(9): 606-608. |
| [5] | 吴鑫, 任海朋. KRASG12C抑制剂在晚期结直肠癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(8): 538-542. |
| [6] | 曹纯, 王琳, 曾斌. 信迪利单抗治疗小细胞肺癌1例[J]. 国际肿瘤学杂志, 2025, 52(8): 543-544. |
| [7] | 张露莹, 梁嘉欣, 赵可雷, 袁晓晗, 刘亮博, 路平, 张桂芳, 张敏. 驱动基因阴性晚期NSCLC一线免疫及其联合治疗进展后不同二线治疗策略疗效的真实世界研究[J]. 国际肿瘤学杂志, 2025, 52(7): 419-425. |
| [8] | 李锦鑫, 顾芬芬. 信迪利单抗联合多西他赛治疗宫颈癌疗效及对实验室指标的影响[J]. 国际肿瘤学杂志, 2025, 52(6): 366-373. |
| [9] | 钟啸, 李步托, 王琳琳. ALK阳性NSCLC脑转移放疗的研究进展[J]. 国际肿瘤学杂志, 2025, 52(6): 374-378. |
| [10] | 袁纯, 于雪松, 王孟超, 张韶, 黄彦博, 王超然, 孔凡铭, 陈立伟. EGFR ex20ins突变型晚期NSCLC靶向治疗新进展[J]. 国际肿瘤学杂志, 2025, 52(6): 382-387. |
| [11] | 四川省抗癌协会食管癌专业委员会. 晚期食管鳞状细胞癌一线免疫治疗联合化疗进展后的诊疗策略——四川省专家共识[J]. 国际肿瘤学杂志, 2025, 52(5): 273-281. |
| [12] | 纪淳望, 李松, 刘联. 腹膜转移癌的发病机制与免疫治疗临床研究进展[J]. 国际肿瘤学杂志, 2025, 52(5): 325-330. |
| [13] | 文英美, 夏锦雄, 王园园, 姚颐. 放疗对抗肿瘤免疫的影响:从基础到临床[J]. 国际肿瘤学杂志, 2025, 52(4): 231-236. |
| [14] | 唐磊, 蔡宗佑, 常建华. RET原癌基因与非小细胞肺癌的研究现状[J]. 国际肿瘤学杂志, 2025, 52(4): 237-241. |
| [15] | 魏毓正, 温馨格, 孙诚诚, 范秉杰, 丛蕾. 分子靶向治疗EGFR基因突变和ALK基因融合肺腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2025, 52(4): 249-252. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
