
国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (9): 598-602.doi: 10.3760/cma.j.cn371439-20250417-00101
收稿日期:2025-04-17
修回日期:2025-05-14
出版日期:2025-09-08
发布日期:2025-10-21
通讯作者:
陈敬德
E-mail:1600092@tongji.edu.cn
基金资助:
Hai Yanan, Bao Wenfang, Shentu Hangxiao, Chen Jingde(
)
Received:2025-04-17
Revised:2025-05-14
Online:2025-09-08
Published:2025-10-21
Contact:
Chen Jingde
E-mail:1600092@tongji.edu.cn
Supported by:摘要:
错配修复缺陷和(或)微卫星高度不稳定性(dMMR/MSI-H)转移性结直肠癌(CRC)因高肿瘤突变负荷和新抗原富集对免疫检查点抑制剂具有较高的敏感性,但仍有45%~60%的患者存在原发或获得性耐药。其耐药机制复杂,涉及肿瘤微环境异质性、多重免疫检查点共表达、致癌通路异常激活、代谢失调、肠道菌群失衡、HLA-Ⅰ类分子缺陷及表观遗传调控等。目前针对逆转免疫治疗耐药的策略包括免疫联合疗法、个性化新抗原疫苗、肠道菌群移植、表观遗传干预及免疫细胞过继疗法等。进一步分析dMMR/MSI-H转移性CRC免疫治疗耐药的潜在机制以及目前克服免疫治疗耐药的策略,可为逆转此类患者免疫治疗耐药提供理论依据。
海亚楠, 鲍文芳, 申屠航笑, 陈敬德. dMMR/MSI-H转移性结直肠癌免疫治疗耐药机制及耐药后治疗进展[J]. 国际肿瘤学杂志, 2025, 52(9): 598-602.
Hai Yanan, Bao Wenfang, Shentu Hangxiao, Chen Jingde. Mechanism of immunotherapy resistance and the progress of post-resistance treatment for dMMR/MSI-H metastatic colorectal cancer[J]. Journal of International Oncology, 2025, 52(9): 598-602.
| [1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834. |
| [2] |
Taieb J, Svrcek M, Cohen R, et al. Deficient mismatch repair/microsatellite unstable colorectal cancer: diagnosis, prognosis and treatment[J]. Eur J Cancer, 2022, 175: 136-157. DOI: 10.1016/j.ejca.2022.07.020.
pmid: 36115290 |
| [3] | Mulet-Margalef N, Linares J, Badia-Ramentol J, et al. Challenges and therapeutic opportunities in the dMMR/MSI-H colorectal cancer landscape[J]. Cancers (Basel), 2023, 15(4): 1022. DOI: 10.3390/cancers15041022. |
| [4] |
Wang Q, Shen X, Chen G, et al. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: from mechanisms to translation[J]. Int J Cancer, 2023, 153(4): 709-722. DOI: 10.1002/ijc.34464.
pmid: 36752642 |
| [5] |
Ratovomanana T, Nicolle R, Cohen R, et al. Prediction of response to immune checkpoint blockade in patients with metastatic colorectal cancer with microsatellite instability[J]. Ann Oncol, 2023, 34(8): 703-713. DOI: 10.1016/j.annonc.2023.05.010.
pmid: 37269904 |
| [6] | Fucà G, Cohen R, Lonardi S, et al. Ascites and resistance to immune checkpoint inhibition in dMMR/MSI-H metastatic colorectal and gastric cancers[J]. J Immunother Cancer, 2022, 10(2): e004001. DOI: 10.1136/jitc-2021-004001. |
| [7] | Küçükköse E, Heesters BA, Villaudy J, et al. Modeling resistance of colorectal peritoneal metastases to immune checkpoint blockade in humanized mice[J]. J Immunother Cancer, 2022, 10(12): e005345. DOI: 10.1136/jitc-2022-005345. |
| [8] |
Hosokawa A, Tamura H, Ichihara A, et al. Pathological complete response to liver metastasis with pembrolizumab in a previously treated patient with microsatellite instability-high colorectal cancer[J]. Anticancer Res, 2024, 44(9): 4119-4125. DOI: 10.21873/anticanres.17241.
pmid: 39197935 |
| [9] |
Lin A, Zhang J, Luo P. Crosstalk between the MSI status and tumor microenvironment in colorectal cancer[J]. Front Immunol, 2020, 11: 2039. DOI: 10.3389/fimmu.2020.02039.
pmid: 32903444 |
| [10] | Burke KP, Chaudhri A, Freeman GJ, et al. The B7: CD28 family and friends: unraveling coinhibitory interactions[J]. Immunity, 2024, 57(2): 223-244. DOI: 10.1016/j.immuni.2024.01.013. |
| [11] | Shi D, Wu X, Jian Y, et al. USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in colorectal cancer[J]. Nat Commun, 2022, 13(1): 5644. DOI: 10.1038/s41467-022-33285-x. |
| [12] | Zhong ZA, Michalski MN, Stevens PD, et al. Regulation of Wnt receptor activity: implications for therapeutic development in colon cancer[J]. J Biol Chem, 2021, 296: 100782. DOI: 10.1016/j.jbc.2021.100782. |
| [13] |
Wang Y, Liu S, Yang Z, et al. Anti-PD-1/L1 lead-in before MAPK inhibitor combination maximizes antitumor immunity and efficacy[J]. Cancer Cell, 2021, 39(10): 1375-1387.e6. DOI: 10.1016/j.ccell.2021.07.023.
pmid: 34416167 |
| [14] | Liu J, Huang X, Liu H, et al. Immune landscape and prognostic immune-related genes in KRAS-mutant colorectal cancer patients[J]. J Transl Med, 2021, 19(1): 27. DOI: 10.1186/s12967-020-02638-9. |
| [15] | Deng Z, Fan T, Xiao C, et al. TGF-β signaling in health, disease and therapeutics[J]. Signal Transduct Target Ther, 2024, 9(1): 61. DOI: 10.1038/s41392-024-01764-w. |
| [16] | Derynck R, Turley SJ, Akhurst RJ. TGF-β biology in cancer progression and immunotherapy[J]. Nat Rev Clin Oncol, 2021, 18(1): 9-34. DOI: 10.1038/s41571-020-0403-1. |
| [17] |
Di Nicolantonio F, Vitiello PP, Marsoni S, et al. Precision oncology in metastatic colorectal cancer-from biology to medicine[J]. Nat Rev Clin Oncol, 2021, 18(8): 506-525. DOI: 10.1038/s41571-021-00495-z.
pmid: 33864051 |
| [18] | Kirby D, Parmar B, Fathi S, et al. Determinants of ligand specificity and functional plasticity in type Ⅰ interferon signaling[J]. Front Immunol, 2021, 12: 748423. DOI: 10.3389/fimmu.2021.748423. |
| [19] | Yamaguchi H, Hsu JM, Sun L, et al. Advances and prospects of biomarkers for immune checkpoint inhibitors[J]. Cell Rep Med, 2024, 5(7): 101621. DOI: 10.1016/j.xcrm.2024.101621. |
| [20] |
Vasaikar S, Huang C, Wang X, et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities[J]. Cell, 2019, 177(4): 1035-1049.e19. DOI: 10.1016/j.cell.2019.03.030.
pmid: 31031003 |
| [21] |
Mager LF, Burkhard R, Pett N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy[J]. Science, 2020, 369(6510): 1481-1489. DOI: 10.1126/science.abc3421.
pmid: 32792462 |
| [22] | 贺小康, 涂贤, 姚菲, 等. 具核梭杆菌与结直肠癌发生发展的研究进展[J]. 国际肿瘤学杂志, 2022, 49(2): 121-124. DOI: 10.3760/cma.j.cn371439-20210202-00020. |
| [23] | Kim HS, Kim CG, Kim WK, et al. Fusobacterium nucleatum induces a tumor microenvironment with diminished adaptive immunity against colorectal cancers[J]. Front Cell Infect Microbiol, 2023, 13: 1101291. DOI: 10.3389/fcimb.2023.1101291. |
| [24] | Chen Z, Huang L. Fusobacterium nucleatum carcinogenesis and drug delivery interventions[J]. Adv Drug Deliv Rev, 2024, 209: 115319. DOI: 10.1016/j.addr.2024.115319. |
| [25] | Kluger H, Barrett JC, Gainor JF, et al. Society for immunotherapy of cancer (SITC) consensus definitions for resistance to combinations of immune checkpoint inhibitors[J]. J Immunother Cancer, 2023, 11(3): e005921. DOI: 10.1136/jitc-2022-005921. |
| [26] | Liu F, Zhong F, Wu H, et al. Prevalence and associations of beta2-microglobulin mutations in MSI-H/dMMR cancers[J]. Oncologist, 2023, 28(3): e136-e144. DOI: 10.1093/oncolo/oyac268. |
| [27] |
Ghoneim HE, Fan Y, Moustaki A, et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation[J]. Cell, 2017, 170(1): 142-157.e19. DOI: 10.1016/j.cell.2017.06.007.
pmid: 28648661 |
| [28] | André T, Elez E, Lenz HJ, et al. Nivolumab plus ipilimumab versus nivolumab in microsatellite instability-high metastatic colorectal cancer (CheckMate 8HW): a randomised, open-label, phase 3 trial[J]. Lancet, 2025, 405(10476): 383-395. DOI: 10.1016/S0140-6736(24)02848-4. |
| [29] |
Paik J. Nivolumab plus relatlimab: first approval[J]. Drugs, 2022, 82(8): 925-931. DOI: 10.1007/s40265-022-01723-1.
pmid: 35543970 |
| [30] | Overman MJ, Gelsomino F, Aglietta M, et al. Nivolumab plus relatlimab in patients with previously treated microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase Ⅱ CheckMate 142 study[J]. J Immunother Cancer, 2024, 12(5): e008689. DOI: 10.1136/jitc-2023-008689. |
| [31] | Yu JH, Xiao BY, Li DD, et al. Neoadjuvant camrelizumab plus apatinib for locally advanced microsatellite instability-high or mismatch repair-deficient colorectal cancer (NEOCAP): a single-arm, open-label, phase 2 study[J]. Lancet Oncol, 2024, 25(7): 843-852. DOI: 10.1016/S1470-2045(24)00203-1. |
| [32] |
Fukuoka S, Hara H, Takahashi N, et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ⅰb trial (REGONIVO, EPOC1603)[J]. J Clin Oncol, 2020, 38(18): 2053-2061. DOI: 10.1200/JCO.19.03296.
pmid: 32343640 |
| [33] | 詹海峰, 王文学, 耿嘉蔚. 晚期结直肠癌精准分子靶向治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 601-605. DOI: 10.3760/cma.j.cn371439-20240522-00100. |
| [34] | Ambrosini M, Tougeron D, Modest D, et al. BRAF+EGFR+/-MEK inhibitors after immune checkpoint inhibitors in BRAFV600E mutated and deficient mismatch repair or microsatellite instability high metastatic colorectal cancer[J]. Eur J Cancer, 2024, 210: 114290. DOI: 10.1016/j.ejca.2024.114290. |
| [35] | Jiao J, Wu Y, Wu S, et al. Enhancing colorectal cancer treatment through VEGF/VEGFR inhibitors and immunotherapy[J]. Curr Treat Options Oncol, 2025, 26(3): 213-225. DOI: 10.1007/s11864-025-01306-8. |
| [36] |
Antoniotti C, Rossini D, Pietrantonio F, et al. Upfront fluorouracil, leucovorin, oxaliplatin, and irinotecan plus bevacizumab with or without atezolizumab for patients with metastatic colorectal cancer: updated and overall survival results of the ATEZOTRIBE study[J]. J Clin Oncol, 2024, 42(22): 2637-2644. DOI: 10.1200/JCO.23.02728.
pmid: 38865678 |
| [37] | Wang ZX, Peng J, Liang X, et al. First-line serplulimab in metastatic colorectal cancer: phase 2 results of a randomized, double-blind, phase 2/3 trial[J]. Med, 2024, 5(9): 1150-1163.e3. DOI: 10.1016/j.medj.2024.05.009. |
| [38] | Jin Y, Jiang J, Mao W, et al. Treatment strategies and molecular mechanism of radiotherapy combined with immunotherapy in colorectal cancer[J]. Cancer Lett, 2024, 591: 216858. DOI: 10.1016/j.canlet.2024.216858. |
| [39] | Parikh AR, Szabolcs A, Allen JN, et al. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase Ⅱ trial[J]. Nat Cancer, 2021, 2(11): 1124-1135. DOI: 10.1038/s43018-021-00269-7. |
| [40] | Lin Z, Cai M, Zhang P, et al. Phase Ⅱ, single-arm trial of preo-perative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer[J]. J Immunother Cancer, 2021, 9(11): e003554. DOI: 10.1136/jitc-2021-003554. |
| [41] | Barnestein R, Galland L, Kalfeist L, et al. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness[J]. Oncoimmuno-logy, 2022, 11(1): 2120676. DOI: 10.1080/2162402X.2022.2120676. |
| [42] |
Thibaudin M, Fumet JD, Chibaudel B, et al. First-line durvalumab and tremelimumab with chemotherapy in RAS-mutated metastatic colorectal cancer: a phase 1b/2 trial[J]. Nat Med, 2023, 29(8): 2087-2098. DOI: 10.1038/s41591-023-02497-z.
pmid: 37563240 |
| [43] |
Leoni G, D'Alise AM, Cotugno G, et al. A genetic vaccine encoding shared cancer neoantigens to treat tumors with microsatellite instability[J]. Cancer Res, 2020, 80(18): 3972-3982. DOI: 10.1158/0008-5472.CAN-20-1072.
pmid: 32690723 |
| [44] | McHale D, Francisco-Anderson L, Sandy P, et al. P-325 oral delivery of a single microbial strain, EDP1503, induces anti-tumor responses via gut-mediated activation of both innate and adaptive immunity[J]. Ann Oncol, 2020, 31, Supplement 3: S195. DOI: 10.1016/j.annonc.2020.04.407. |
| [45] | Valsecchi AA, Ferrari G, Paratore C, et al. Gut and local microbiota in patients with cancer: increasing evidence and potential clinical applications[J]. Crit Rev Oncol Hematol, 2024, 197: 104328. DOI: 10.1016/j.critrevonc.2024.104328. |
| [46] | Liu Z, Ren Y, Weng S, et al. A new trend in cancer treatment: the combination of epigenetics and immunotherapy[J]. Front Immunol, 2022, 13: 809761. DOI: 10.3389/fimmu.2022.809761. |
| [47] | Huang KC, Chiang SF, Chen WT, et al. Decitabine augments chemotherapy-induced PD-L1 upregulation for PD-L1 blockade in colorectal cancer[J]. Cancers (Basel), 2020, 12(2): 462. DOI: 10.3390/cancers12020462. |
| [48] | Kim YD, Park SM, Ha HC, et al. HDAC inhibitor, CG-745, enhances the anti-cancer effect of anti-PD-1 immune checkpoint inhibitor by modulation of the immune microenvironment[J]. J Cancer, 2020, 11(14): 4059-4072. DOI: 10.7150/jca.44622. |
| [49] |
Wang F, Jin Y, Wang M, et al. Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: a randomized phase 2 trial[J]. Nat Med, 2024, 30(4): 1035-1043. DOI: 10.1038/s41591-024-02813-1.
pmid: 38438735 |
| [50] |
Albrecht HC, Gustavus D, Schwanemann J, et al. Generation of colon cancer-derived tumor-infiltrating T cells (TILs) for adoptive cell therapy[J]. Cytotherapy, 2023, 25(5): 537-547. DOI: 10.1016/j.jcyt.2023.01.009.
pmid: 36775787 |
| [51] |
Wang Z, Cao YJ. Adoptive cell therapy targeting neoantigens: a frontier for cancer research[J]. Front Immunol, 2020, 11: 176. DOI: 10.3389/fimmu.2020.00176.
pmid: 32194541 |
| [1] | 陈俊, 唐丹丹, 周雨馨, 谭玉婷, 李泓澜, 徐群, 项永兵. 1990—2021年中国中青年结直肠癌疾病负担时间趋势分析[J]. 国际肿瘤学杂志, 2025, 52(8): 508-516. |
| [2] | 吴鑫, 任海朋. KRASG12C抑制剂在晚期结直肠癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(8): 538-542. |
| [3] | 曹纯, 王琳, 曾斌. 信迪利单抗治疗小细胞肺癌1例[J]. 国际肿瘤学杂志, 2025, 52(8): 543-544. |
| [4] | 张露莹, 梁嘉欣, 赵可雷, 袁晓晗, 刘亮博, 路平, 张桂芳, 张敏. 驱动基因阴性晚期NSCLC一线免疫及其联合治疗进展后不同二线治疗策略疗效的真实世界研究[J]. 国际肿瘤学杂志, 2025, 52(7): 419-425. |
| [5] | 李锦鑫, 顾芬芬. 信迪利单抗联合多西他赛治疗宫颈癌疗效及对实验室指标的影响[J]. 国际肿瘤学杂志, 2025, 52(6): 366-373. |
| [6] | 王勇, 乌新林. 结直肠癌肝转移的相关分子机制[J]. 国际肿瘤学杂志, 2025, 52(6): 388-391. |
| [7] | 四川省抗癌协会食管癌专业委员会. 晚期食管鳞状细胞癌一线免疫治疗联合化疗进展后的诊疗策略——四川省专家共识[J]. 国际肿瘤学杂志, 2025, 52(5): 273-281. |
| [8] | 郭海洋, 洪永刚, 郝立强. 铁死亡在结直肠癌中的作用及研究进展[J]. 国际肿瘤学杂志, 2025, 52(5): 319-324. |
| [9] | 纪淳望, 李松, 刘联. 腹膜转移癌的发病机制与免疫治疗临床研究进展[J]. 国际肿瘤学杂志, 2025, 52(5): 325-330. |
| [10] | . 结直肠癌筛查与早诊早治方案(2024年版)[J]. 国际肿瘤学杂志, 2025, 52(4): 195-196. |
| [11] | 王逸, 王强力, 张甲, 杨懿瑾, 王盛. 结直肠癌肝转移患者组织中SUCNR1和YBX1的表达与临床病理特征及预后的关系[J]. 国际肿瘤学杂志, 2025, 52(3): 152-157. |
| [12] | 陈茹雁, 付振明. 晚期肾细胞癌的免疫治疗现状与进展[J]. 国际肿瘤学杂志, 2025, 52(2): 124-128. |
| [13] | 詹海峰, 谭子煊, 王文学, 耿嘉蔚. 节律基因在结直肠癌发生发展和时辰疗法中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(1): 60-64. |
| [14] | 韦伟, 蔡曌颖, 钱亚云. 通关藤联合XELOX方案促进人结直肠癌HCT116细胞双硫死亡的作用[J]. 国际肿瘤学杂志, 2024, 51(9): 545-555. |
| [15] | 詹海峰, 王文学, 耿嘉蔚. 晚期结直肠癌精准分子靶向治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 601-605. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||