国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (5): 319-324.doi: 10.3760/cma.j.cn371439-20250328-00054
收稿日期:
2025-03-28
修回日期:
2025-04-03
出版日期:
2025-05-08
发布日期:
2025-06-24
通讯作者:
郝立强
E-mail:hao_liqiang@139.com
基金资助:
Guo Haiyang, Hong Yonggang, Hao Liqiang()
Received:
2025-03-28
Revised:
2025-04-03
Online:
2025-05-08
Published:
2025-06-24
Contact:
Hao Liqiang
E-mail:hao_liqiang@139.com
Supported by:
摘要:
结直肠癌(CRC)是全球高发的消化系统恶性肿瘤之一,其发病率和死亡率近年持续攀升。虽然多种治疗手段不断发展,但晚期CRC预后仍不理想,迫切需要探索新的分子机制和治疗策略。铁死亡是一种依赖铁离子和脂质过氧化的程序性细胞死亡方式,在肿瘤发生发展及治疗抵抗中具有重要作用,激活铁死亡可显著抑制肿瘤细胞生长。进一步探索铁死亡在CRC发生发展及治疗中的作用机制,可为CRC相关基础与临床研究提供参考。
郭海洋, 洪永刚, 郝立强. 铁死亡在结直肠癌中的作用及研究进展[J]. 国际肿瘤学杂志, 2025, 52(5): 319-324.
Guo Haiyang, Hong Yonggang, Hao Liqiang. Role and research progress of ferroptosis in colorectal cancer[J]. Journal of International Oncology, 2025, 52(5): 319-324.
[1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834. |
[2] |
Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-685. DOI: 10. 1001/jama.2021.0106.
pmid: 33591350 |
[3] | 詹海峰, 王文学, 耿嘉蔚. 晚期结直肠癌精准分子靶向治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 601-605. DOI: 10.3760/cma.j.cn371439-20240522-00100. |
[4] | Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. DOI: 10.1038/s41419-020-2298-2. |
[5] | Deng L, He S, Guo N, et al. Molecular mechanisms of ferroptosis and relevance to inflammation[J]. Inflamm Res, 2023, 72(2): 281-299. DOI: 10.1007/s00011-022-01672-1. |
[6] | Wang S, Guo Q, Zhou L, et al. Ferroptosis: a double-edged sword[J]. Cell Death Discov, 2024, 10(1): 265. DOI: 10.1038/s41420-024-02037-9. |
[7] | Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan study group[J]. N Engl J Med, 2000, 343(13): 905-914. DOI: 10.1056/NEJM200 009283431302. |
[8] | Wang Y, Zhang Z, Sun W, et al. Ferroptosis in colorectal cancer: potential mechanisms and effective therapeutic targets[J]. Biomed Pharmacother, 2022, 153: 113524. DOI: 10.1016/j.biopha.2022. 113524. |
[9] | Yan H, Talty R, Aladelokun O, et al. Ferroptosis in colorectal cancer: a future target?[J]. Br J Cancer, 2023, 128(8): 1439-1451. DOI: 10.1038/s41416-023-02149-6. |
[10] |
Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: tumor suppression, tumor microenvironment, and therapeutic interventions[J]. Cancer Cell, 2024, 42(4): 513-534. DOI: 10.1016/j.ccell. 2024.03.011.
pmid: 38593779 |
[11] |
Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. DOI: 10.1016/j.cell.2022.06.003
pmid: 35803244 |
[12] | Hernández Borrero LJ, El-Deiry WS. Tumor suppressor p53: biology, signaling pathways, and therapeutic targeting[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876( 1): 188556. DOI: 10.1016/j.bbcan. 2021.188556. |
[13] | Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/nature14344. |
[14] | Zhao Y, Ma R, Wang C, et al. CAPG interference induces apoptosis and ferroptosis in colorectal cancer cells through the P53 pathway[J]. Mol Cell Probes, 2023, 71: 101919. DOI: 10.1016/j.mcp. 2023.101919. |
[15] |
Ming T, Lei J, Peng Y, et al. Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis[J]. Phytother Res, 2024, 38(8): 3954-3972. DOI: 10.1002/ptr.8258.
pmid: 38837315 |
[16] |
Lee H, Zandkarimi F, Zhang Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234. DOI: 10.1038/s41556-020-0461-8.
pmid: 32029897 |
[17] | Han WM, Hong YX, Xiao GS, et al. NMDARs activation regulates endothelial ferroptosis via the PP2A-AMPK-HMGB1 axis[J]. Cell Death Discov, 2024, 10(1): 34. DOI: 10.1038/s41420-023-01794-3. |
[18] | Yi J, Zhu J, Wu J, et al. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis[J]. Proc Natl Acad Sci U S A, 2020, 117(49): 31189-31197. DOI: 10.1073/pnas.2017152117. |
[19] |
Fan F, Liu P, Bao R, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy[J]. Cancer Res, 2021, 81(24): 6233-6245. DOI: 10.1158/0008-5472.Can-21-1547.
pmid: 34711611 |
[20] |
Ma S, Meng Z, Chen R, et al. The hippo pathway: biology and pathophysiology[J]. Annu Rev Biochem, 2019, 88: 577-604. DOI: 10.1146/annurev-biochem-013118-111829.
pmid: 30566373 |
[21] | Wu J, Minikes AM, Gao M, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling[J]. Nature, 2019, 572(7769): 402-406. DOI: 10.1038/s41586-019-1426-6. |
[22] |
Ou C, Sun Z, Li S, et al. Dual roles of yes-associated protein (YAP) in colorectal cancer[J]. Oncotarget, 2017, 8(43): 75727-75741. DOI: 10.18632/oncotarget.20155.
pmid: 29088905 |
[23] | Sato M, Kusumi R, Hamashima S, et al. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells[J]. Sci Rep, 2018, 8(1): 968. DOI: 10.1038/s41598-018-19213-4. |
[24] |
Sun Y, Deng R, Zhang C. Erastin induces apoptotic and ferroptotic cell death by inducing ROS accumulation by causing mitochondrial dysfunction in gastric cancer cell HGC‑27[J]. Mol Med Rep, 2020, 22(4): 2826-2832. DOI: 10.3892/mmr.2020.11376.
pmid: 32945484 |
[25] |
Sui X, Zhang R, Liu S, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer[J]. Front Pharmacol, 2018, 9: 1371. DOI: 10.3389/fphar.2018.01371.
pmid: 30524291 |
[26] | Zheng C, Wang C, Sun D, et al. Structure-activity relationship study of RSL3-based GPX4 degraders and its potential noncovalent optimization[J]. Eur J Med Chem, 2023, 255: 115393. DOI: 10. 1016/j.ejmech.2023.115393. |
[27] | Yang J, Mo J, Dai J, et al. Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer[J]. Cell Death Dis, 2021, 12(11): 1079. DOI: 10.1038/s41419-021-04367-3. |
[28] | Zhang Y, Song Q, Zhang Y, et al. Iron-based nanovehicle delivering fin56 for hyperthermia-boosted ferroptosis therapy against osteosarcoma[J]. Int J Nanomedicine, 2024, 19: 91-107. DOI: 10.2147/ijn.S441112. |
[29] | Du Y, Guo Z. Recent progress in ferroptosis: inducers and inhibitors[J]. Cell Death Discov, 2022, 8(1): 501. DOI: 10.1038/s41420-022-01297-7. |
[30] | Zoetemelk M, Ramzy GM, Rausch M, et al. Drug-drug interactions of irinotecan, 5-fluorouracil, folinic acid and oxaliplatin and its activity in colorectal carcinoma treatment[J]. Molecules, 2020, 25(11): 2614. DOI: 10.3390/molecules25112614. |
[31] | Liu J, Bi K, Yang R, et al. Role of DNA damage and repair in radiation cancer therapy: a current update and a look to the future[J]. Int J Radiat Biol, 2020, 96(11): 1329-1338. DOI: 10.1080/09553002.2020.1807641. |
[32] | Zheng Y, Sun L, Guo J, et al. The crosstalk between ferroptosis and anti-tumor immunity in the tumor microenvironment: molecular mechanisms and therapeutic controversy[J]. Cancer Commun, 2023, 43(10): 1071-1096. DOI: 10.1002/cac2.12487. |
[33] | Guo XW, Lei RE, Zhou QN, et al. Tumor microenvironment characterization in colorectal cancer to identify prognostic and immunotherapy genes signature[J]. BMC Cancer, 2023, 23(1): 773. DOI: 10.1186/s12885-023-11277-4. |
[34] | Zhou X, Kandalai S, Hossain F, et al. Tumor microbiome metabolism:A game changer in cancer development and therapy[J]. Front Oncol, 2022, 12: 933407. DOI: 10.3389/fonc.2022.933407. |
[35] | Singhal R, Mitta SR, Das NK, et al. HIF-2α activation potentiates oxidative cell death in colorectal cancers by increasing cellular iron[J]. J Clin Invest, 2021, 131(12): 143691. DOI: 10.1172/jci143691. |
[36] | Chun Y, Kim J. AMPK-mTOR signaling and cellular adaptations in hypoxia[J]. Int J Mol Sci, 2021, 22(18): 9765. DOI: 10.3390/ijms22189765. |
[37] | Yu Z, Tong S, Wang C, et al. PPy@Fe3O4 nanoparticles inhibit the proliferation and metastasis of CRC via suppressing the NF-κ B signaling pathway and promoting ferroptosis[J]. Front Bioeng Biotechnol, 2022, 10: 1001994. DOI: 10.3389/fbioe.2022.1001994. |
[38] | Li Y, Chen J, Xia Q, et al. Photothermal Fe3O4 nanoparticles induced immunogenic ferroptosis for synergistic colorectal cancer therapy[J]. J Nanobiotechnology, 2024, 22(1): 630. DOI: 10. 1186/s12951-024-02909-3. |
[39] | Dai SM, Li FJ, Long HZ, et al. Relationship between miRNA and ferroptosis in tumors[J]. Front Pharmacol, 2022, 13: 977062. DOI: 10.3389/fphar.2022.977062. |
[40] | Yang G, Qian B, He L, et al. Application prospects of ferroptosis in colorectal cancer[J]. Cancer Cell Int, 2025, 25(1): 59. DOI: 10.1186/s12935-025-03641-0. |
[41] | Elrebehy MA, Abdelghany TM, Elshafey MM, et al. miR-509-5p promotes colorectal cancer cell ferroptosis by targeting SLC7A11[J]. Pathol Res Pract, 2023, 247: 154557. DOI: 10.1016/j.prp.2023. 154557. |
[42] | Zhang Z, Huang Q, Yu L, et al. The role of miRNA in tumor immune escape and miRNA-based therapeutic strategies[J]. Front Immunol, 2021, 12: 807895. DOI: 10.3389/fimmu.2021.807895. |
[43] |
Fan H, Ai R, Mu S, et al. MiR-19a suppresses ferroptosis of colorectal cancer cells by targeting IREB2[J]. Bioengineered, 2022, 13(5): 12021-12029. DOI: 10.1080/21655979.2022.2054194.
pmid: 35599631 |
[44] | Wang T, Liang S, Li Y, et al. Downregulation of lncRNA SLC7A11-AS1 decreased the NRF2/SLC7A11 expression and inhibited the progression of colorectal cancer cells[J]. PeerJ, 2023, 11: e15216. DOI: 10.7717/peerj.15216. |
[45] | Han Y, Gao X, Wu N, et al. Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2[J]. Cell Death Dis, 2022, 13(8): 742. DOI: 10. 1038/s41419-022-05192-y. |
[46] | Li Q, Li K, Guo Q, et al. CircRNA circSTIL inhibits ferroptosis in colorectal cancer via miR-431/SLC7A11 axis[J]. Environ Toxicol, 2023, 38(5): 981-989. DOI: 10.1002/tox.23670. |
[47] | Zhang W, Liu Y, Liao Y, et al. GPX4, ferroptosis, and diseases[J]. Biomed Pharmacother, 2024, 174: 116512. DOI: 10.1016/j.biopha.2024.116512. |
[48] | Huang Y, Yang W, Yang L, et al. Nrf2 inhibition increases sensitivity to chemotherapy of colorectal cancer by promoting ferroptosis and pyroptosis[J]. Sci Rep, 2023, 13(1): 14359. DOI: 10.1038/s41598-023-41490-x. |
[49] | Wang J, Wu N, Peng M, et al. Ferritinophagy: research advance and clinical significance in cancers[J]. Cell Death Discov, 2023, 9(1): 463. DOI: 10.1038/s41420-023-01753-y. |
[50] | Ding K, Liu C, Li L, et al. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism[J]. Chin Med J (Engl), 2023, 136(21): 2521-2537. DOI: 10.1097/cm9.000000 0000002533. |
[51] | Dai G, Wang D, Ma S, et al. ACSL4 promotes colorectal cancer and is a potential therapeutic target of emodin[J]. Phytomedicine, 2022, 102: 154149. DOI: 10.1016/j.phymed.2022.154149. |
[52] | Lee J, Roh JL. SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer[J]. Antioxidants (Basel), 2022, 11(12): 2444. DOI: 10.3390/antiox11122444. |
[53] | He J, Ding H, Li H, et al. Intra-tumoral expression of SLC7A11 is associated with immune microenvironment, drug resistance, and prognosis in cancers: a pan-cancer analysis[J]. Front Genet, 2021, 12: 770857. DOI: 10.3389/fgene.2021.770857. |
[54] |
Hendricks JM, Doubravsky CE, Wehri E, et al. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis[J]. Cell Chem Biol, 2023, 30(9): 1090-1103.e7. DOI: 10.1016/j.chembiol.2023.04.007.
pmid: 37178691 |
[55] |
Li W, Liang L, Liu S, et al. FSP1: a key regulator of ferroptosis[J]. Trends Mol Med, 2023, 29(9): 753-764. DOI: 10.1016/j.molmed. 2023.05.013.
pmid: 37357101 |
[1] | 王勇, 乌新林. 结直肠癌肝转移的相关分子机制[J]. 国际肿瘤学杂志, 2025, 52(6): 388-391. |
[2] | 郑思齐, 郭婷, 王敬, 田映红, 张兴梅. 适配体筛选技术及其在肿瘤治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(5): 304-308. |
[3] | . 结直肠癌筛查与早诊早治方案(2024年版)[J]. 国际肿瘤学杂志, 2025, 52(4): 195-196. |
[4] | 王逸, 王强力, 张甲, 杨懿瑾, 王盛. 结直肠癌肝转移患者组织中SUCNR1和YBX1的表达与临床病理特征及预后的关系[J]. 国际肿瘤学杂志, 2025, 52(3): 152-157. |
[5] | 余洋, 唐仕敏, 杨露, 李娜. pT2-3N0M0期胸段食管鳞状细胞癌治疗策略及预后影响因素研究进展[J]. 国际肿瘤学杂志, 2025, 52(1): 43-47. |
[6] | 詹海峰, 谭子煊, 王文学, 耿嘉蔚. 节律基因在结直肠癌发生发展和时辰疗法中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(1): 60-64. |
[7] | 韦伟, 蔡曌颖, 钱亚云. 通关藤联合XELOX方案促进人结直肠癌HCT116细胞双硫死亡的作用[J]. 国际肿瘤学杂志, 2024, 51(9): 545-555. |
[8] | 詹海峰, 王文学, 耿嘉蔚. 晚期结直肠癌精准分子靶向治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 601-605. |
[9] | 李志伟, 翟春宝. 中药多酚类成分抗结直肠癌作用研究进展[J]. 国际肿瘤学杂志, 2024, 51(8): 526-531. |
[10] | 韩艺, 张同梅, 齐菲, 张泳. 肺大细胞神经内分泌癌临床分子诊断和治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(7): 468-473. |
[11] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[12] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[13] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[14] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[15] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛. 铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||