国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (5): 325-330.doi: 10.3760/cma.j.cn371439-20250106-00055
收稿日期:
2025-01-06
修回日期:
2025-03-14
出版日期:
2025-05-08
发布日期:
2025-06-24
通讯作者:
刘联
E-mail:lianliu@sdu.edu.cn
基金资助:
Ji Chunwang1,2, Li Song2, Liu Lian2()
Received:
2025-01-06
Revised:
2025-03-14
Online:
2025-05-08
Published:
2025-06-24
Contact:
Liu Lian
E-mail:lianliu@sdu.edu.cn
Supported by:
摘要:
腹膜转移癌是晚期恶性肿瘤的常见表现,其复杂的病理特征和独特的免疫抑制微环境使传统治疗效果有限。目前,腹膜转移癌的免疫治疗显示出了一定的潜力,但仍面临诸多挑战。未来的研究应聚焦新免疫靶点开发,局部与全身用药方式相结合,通过单细胞基因组学和空间转录组技术揭示肿瘤微环境特征,并借助人工智能筛选适用人群,有望有效改善患者生存。
纪淳望, 李松, 刘联. 腹膜转移癌的发病机制与免疫治疗临床研究进展[J]. 国际肿瘤学杂志, 2025, 52(5): 325-330.
Ji Chunwang, Li Song, Liu Lian. Progress of pathogenesis and clinical research on immunotherapy for peritoneal carcinomatosis[J]. Journal of International Oncology, 2025, 52(5): 325-330.
[1] |
Almerie MQ, Gossedge G, Wright KE, et al. Treatment of peritoneal carcinomatosis with photodynamic therapy: systematic review of current evidence[J]. Photodiagnosis Photodyn Ther, 2017, 20: 276-286. DOI: 10.1016/j.pdpdt.2017.10.021.
pmid: 29111390 |
[2] |
Moran BJ, Guerra GR. Randomized controlled trials in surgical resection of colorectal peritoneal metastases: disentangling negativity in PRODIGE 7 and PROPHYLOCHIP[J]. Colorectal Dis, 2021, 23(6): 1303-1305. DOI: 10.1111/codi.15596.
pmid: 33615659 |
[3] | Lei Z, Wang J, Li Z, et al. Hyperthermic intraperitoneal chemotherapy for gastric cancer with peritoneal metastasis: a multicenter propensity score-matched cohort study[J]. Chin J Cancer Res, 2020, 32(6): 794-803. DOI: 10.21147/j.issn.1000-9604.2020.06.12. |
[4] |
McMullen JRW, Selleck M, Wall NR, et al. Peritoneal carcinomatosis: limits of diagnosis and the case for liquid biopsy[J]. Oncotarget, 2017, 8(26): 43481-43490. DOI: 10.18632/oncotarget.16480.
pmid: 28415645 |
[5] |
Bhatt A, Bhamre R, Rohila J, et al. Patients with extensive regional lymph node involvement (pN2) following potentially curative surgery for colorectal cancer are at increased risk for developing peritoneal metastases: a retrospective single-institution study[J]. Colorectal Dis, 2019, 21(3): 287-296. DOI: 10.1111/codi.14481.
pmid: 30457185 |
[6] | Pascual-Antón L, Cardeñes B, Sainz de la Cuesta R, et al. Mesothelial-to-mesenchymal transition and exosomes in peritoneal metastasis of ovarian cancer[J]. Int J Mol Sci, 2021, 22(21): 11496. DOI: 10. 3390/ijms222111496. |
[7] | Xia X, Zhang Z, Zhu C, et al. Neutrophil extracellular traps promote metastasis in gastric cancer patients with postoperative abdominal infectious complications[J]. Nat Commun, 2022, 13(1): 1017. DOI: 10.1038/s41467-022-28492-5. |
[8] | Zhu X, Zhou G, Ni P, et al. CD31 and D2-40 contribute to peritoneal metastasis of colorectal cancer by promoting epithelial-mesenchymal transition[J]. Gut Liver, 2021, 15(2): 273-283. DOI: 10.5009/gnl19407. |
[9] | Xu H, Hao Z, Wang Y, et al. Liquid tumor microenvironment enhances WNT signaling pathway of peritoneal metastasis of gastric cancer[J]. Sci Rep, 2023, 13(1): 11125. DOI: 10.1038/s41598-023-38373-6. |
[10] | Terri M, Trionfetti F, Montaldo C, et al. Mechanisms of peritoneal fibrosis: focus on immune cells-peritoneal stroma interactions[J]. Front Immunol, 2021, 12: 607204. DOI: 10.3389/fimmu.2021. 607204. |
[11] | Miyazaki M, Nakabo A, Nagano Y, et al. Tissue factor-induced fibrinogenesis mediates cancer cell clustering and multiclonal peritoneal metastasis[J]. Cancer Lett, 2023, 553: 215983. DOI: 10.1016/j.canlet.2022.215983. |
[12] | Yan Z, Liu K, Xu P, et al. ACLY promotes gastric tumorigenesis and accelerates peritoneal metastasis of gastric cancer regulated by HIF-1A[J]. Cell Cycle, 2023, 22(20): 2288-2301. DOI: 10.1080/15384101.2023.2286805. |
[13] |
Yu B, Zhu N, Fan Z, et al. miR-29c inhibits metastasis of gastric cancer cells by targeting VEGFA[J]. J Cancer, 2022, 13(14): 3566-3574. DOI: 10.7150/jca.77727.
pmid: 36484007 |
[14] | Deng G, Wang P, Su R, et al. SPI1+ CD68+ macrophages as a biomarker for gastric cancer metastasis: a rationale for combined antiangiogenic and immunotherapy strategies[J]. J Immunother Cancer, 2024, 12(10): e009983. DOI: 10.1136/jitc-2024-009983. |
[15] | Pawar NR, Buzza MS, Duru N, et al. Matriptase drives dissemination of ovarian cancer spheroids by a PAR-2/PI3K/Akt/MMP9 signa-ling axis[J]. J Cell Biol, 222(11): e202209114. DOI: 10.1083/jcb. 202209114. |
[16] | Bella Á, Di Trani CA, Fernández-Sendin M, et al. Mouse models of peritoneal carcinomatosis to develop clinical applications[J]. Cancers (Basel), 2021, 13(5): 963. DOI: 10.3390/cancers13050963. |
[17] |
Wagner PL, Knotts CM, Donneberg VS, et al. Characterizing the immune environment in peritoneal carcinomatosis: insights for novel immunotherapy strategies[J]. Ann Surg Oncol, 2024, 31(3): 2069-2077. DOI: 10.1245/s10434-023-14553-6.
pmid: 37996643 |
[18] | Yu F, Yu C, Li F, et al. Wnt/β-catenin signaling in cancers and targeted therapies[J]. Signal Transduct Target Ther, 6(1): 307. DOI: 10.1038/s41392-021-00701-5. |
[19] | Campos NMF, Almeida V, Curvo Semedo L. Peritoneal disease: key imaging findings that help in the differential diagnosis[J]. Br J Radiol, 2022, 95(1130): 20210346. DOI: 10.1259/bjr.20210346. |
[20] | Zhao JJ, Ong CAJ, Srivastava S, et al. Spatially resolved niche and tumor microenvironmental alterations in gastric cancer peritoneal metastases[J]. Gastroenterology, 2024, 167(7): 1384-1398.e4. DOI: 10.1053/j.gastro.2024.08.007. |
[21] | Wang E, Shibutani M, Nagahara H, et al. Abundant intratumoral fibrosis prevents lymphocyte infiltration into peritoneal metastases of colorectal cancer[J]. PLoS One, 2021, 16(7): e0255049. DOI: 10.1371/journal.pone.0255049. |
[22] |
Chen Y, Cai G, Jiang J, et al. Proteomic profiling of gastric cancer with peritoneal metastasis identifies a protein signature associated with immune microenvironment and patient outcome[J]. Gastric Cancer, 2023, 26(4): 504-516. DOI: 10.1007/s10120-023-01379-0.
pmid: 36930369 |
[23] | Lv F, Li X, Wang Z, et al. Identification and validation of Rab GTPases RAB13 as biomarkers for peritoneal metastasis and immune cell infiltration in colorectal cancer patients[J]. Front Immunol, 2024, 15: 1403008. DOI: 10.3389/fimmu.2024.1403008. |
[24] | Natsume M, Shimura T, Iwasaki H, et al. Omental adipocytes promote peritoneal metastasis of gastric cancer through the CXCL2-VEGFA axis[J]. Br J Cancer, 2020, 123(3): 459-470. DOI: 10.1038/s41416-020-0898-3. |
[25] | Khabipov A, Trung DN, van der Linde J, et al. CCR4 blockade diminishes intratumoral macrophage recruitment and augments survival of syngeneic pancreatic cancer-bearing mice[J]. Biomedicines, 2023, 11(6): 1517. DOI: 10.3390/biomedicines11061517. |
[26] | Do-Thi VA, Park SM, Park SM, et al. IL9 polarizes macrophages to M1 and induces the infiltration of antitumor immune cells via MIP-1 and CXCR3 chemokines[J]. Cancer Res Commun, 2023, 3(1): 80-96. DOI: 10.1158/2767-9764.Crc-22-0246. |
[27] | Jeong M, Wang YY, Choi JY, et al. CC chemokine ligand 7 derived from cancer-stimulated macrophages promotes ovarian cancer cell invasion[J]. Cancers (Basel), 2021, 13(11): 2745. DOI: 10.3390/cancers13112745. |
[28] | Chen X, Lu Q, Zhou H, et al. A membrane-associated MHC -Ⅰ inhibitory axis for cancer immune evasion[J]. Cell, 186(18): 3903-3920.e21. DOI: 10.1016/j.cell.2023.07.016. |
[29] | Lenos KJ, Bach S, Ferreira Moreno L, et al. Molecular characterization of colorectal cancer related peritoneal metastatic disease[J]. Nat Commun, 2022, 13(1): 4443. DOI: 10.1038/s41467-022-32198-z. |
[30] | Almeida-Nunes DL, Mendes-Frias A, Silvestre R, et al. Immune tumor microenvironment in ovarian cancer ascites[J]. Int J Mol Sci, 2022, 23(18): 10692. DOI: 10.3390/ijms231810692. |
[31] | Chen X, Wang H, Huang Y, et al. Comprehensive roles and future perspectives of exosomes in peritoneal metastasis of gastric cancer[J]. Front Oncol, 2021, 11: 684871. DOI: 10.3389/fonc.2021.684871. |
[32] | Zhang J, Liu H, Wu Q, et al. Exosomal ANXA2 facilitates ovarian cancer peritoneal metastasis by activating peritoneal mesothelial cells through binding with TLR2[J]. Cell Commun Signal, 2024, 22(1): 616. DOI: 10.1186/s12964-024-01987-y. |
[33] | Nambara S, Masuda T, Hirose K, et al. Rab27b, a regulator of exosome secretion, is associated with peritoneal metastases in gastric cancer[J]. Cancer Genomics Proteomics, 2023, 20(1): 30-39. DOI: 10.21873/cgp.20362. |
[34] | Kwon M, Kim G, Kim R, et al. Phase Ⅱ study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer[J]. J Immunother Cancer, 2022, 10(7): e005041. DOI: 10.1136/jitc-2022-005041. |
[35] | Klein O, Kee D, Gao B, et al. Combination immunotherapy with nivolumab and ipilimumab in patients with rare gynecological malignancies: results of the CA209-538 clinical trial[J]. J Immunother Cancer, 2021, 9(11): e003156. DOI: 10.1136/jitc-2021-003156. |
[36] | Qiu MZ, Oh DY, Kato K, et al. Tislelizumab plus chemotherapy versus placebo plus chemotherapy as first line treatment for advanced gastric or gastro-oesophageal junction adenocarcinoma: RATIONALE-305 randomised, double blind, phase 3 trial[J]. BMJ, 2024, 385: e078876. DOI: 10.1136/bmj-2023-078876. |
[37] | Fucà G, Cohen R, Lonardi S, et al. Ascites and resistance to immune checkpoint inhibition in dMMR/MSI-H metastatic colorectal and gastric cancers[J]. J Immunother Cancer, 2022, 10(2): e004001. DOI: 10.1136/jitc-2021-004001. |
[38] | Hagi T, Kurokawa Y, Kawabata R, et al. Multicentre biomarker cohort study on the efficacy of nivolumab treatment for gastric cancer[J]. Br J Cancer, 2020, 123(6): 965-972. DOI: 10.1038/s41416-020-0975-7. |
[39] | Dai Y, Liu Y, Gong Z, et al. Revalidation of the ATTRACTION-4 study in a real-world setting: a multicenter, retrospective propensity score matching study in China[J]. Front Immunol, 2023, 14: 1264929. DOI: 10.3389/fimmu.2023.1264929. |
[40] | Kang YK, Chen LT, Ryu MH, et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): a randomised, multicentre, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2022, 23(2): 234-247. DOI: 10.1016/S1470-2045(21)00692-6. |
[41] |
Shi Y, van der Meel R, Chen X, et al. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy[J]. Theranostics, 2020, 10(17): 7921-7924. DOI: 10.7150/thno.49577.
pmid: 32685029 |
[42] | Yamamoto M, Kurino T, Matsuda R, et al. Delivery of aPD-L1 antibody to i.p. tumors via direct penetration by i.p. route: beyond EPR effect[J]. J Control Release, 2022, 352: 328-337. DOI: 10. 1016/j.jconrel.2022.10.032. |
[43] |
Liang S, Xiao L, Chen T, et al. Injectable nanocomposite hydrogels improve intraperitoneal co-delivery of chemotherapeutics and immune checkpoint inhibitors for enhanced peritoneal metastasis therapy[J]. ACS Nano, 2024, 18(29): 18963-18979. DOI: 10.1021/acsnano.4c02312.
pmid: 39004822 |
[44] | Corbaux P, You B, Kepenekian V, et al. Tolerance and preliminary efficacy of intraperitoneall (IP) nivolumab after cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) in patients (pts) with advanced ovarian carcinoma: a phase Ⅰ study with expansion cohort (ICONIC)[J]. Ann Oncol, 2022, 33(Sup7): S825. DOI: 10.1016/j.annonc.2022.07.742. |
[45] | Chen C, Li Z, Xiong X, et al. Intraperitoneal PD-1 monoclonal antibody for the treatment of advanced primary liver cancer with malignant ascites: a single-arm, single-center, phase Ⅰb trial[J]. ESMO Open, 2024, 9(1): 102206. DOI: 10.1016/j.esmoop.2023. 102206. |
[46] | Jung M, Yang Y, McCloskey JE, et al. Chimeric antigen receptor T cell therapy targeting ICAM-1 in gastric cancer[J]. Mol Ther Oncolytics, 2020, 18: 587-601. DOI: 10.1016/j.omto.2020.08.009. |
[47] | Ma Q, He X, Zhang B, et al. A PD-L1-targeting chimeric switch receptor enhances efficacy of CAR-T cell for pleural and peritoneal metastasis[J]. Signal Transduct Target Ther, 2022, 7(1): 380. DOI: 10.1038/s41392-022-01198-2. |
[48] |
Qi C, Gong J, Li J, et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results[J]. Nat Med, 2022, 28(6): 1189-1198. DOI: 10.1038/s41591-022-01800-8.
pmid: 35534566 |
[49] | Li C, Zhou F, Wang J, et al. Novel CD19-specific γ/δ TCR-T cells in relapsed or refractory diffuse large B-cell lymphoma[J]. J Hematol Oncol, 2023, 16(1): 5. DOI: 10.1186/s13045-023-01402-y. |
[50] |
Ishihara M, Nishida Y, Kitano S, et al. A phase 1 trial of NY-ESO-1-specific TCR-engineered T-cell therapy combined with a lymph node-targeting nanoparticulate peptide vaccine for the treatment of advanced soft tissue sarcoma[J]. Int J Cancer, 2023, 152(12): 2554-2566. DOI: 10.1002/ijc.34453.
pmid: 36727538 |
[51] | Hong DS, Tine BAV, Olszanski AJ, et al. Phase Ⅰ dose escalation and expansion trial to assess the safety and efficacy of ADP-A2M4 SPEAR T cells in advanced solid tumors[J]. J Clin Oncol, 2020, 38(15_suppl): 102-102. DOI: 10.1200/JCO.2020.38.15_suppl.102. |
[52] |
Parkhurst M, Goff SL, Lowery FJ, et al. Adoptive transfer of persona-lized neoantigen-reactive TCR-transduced T cells in metastatic colorectal cancer: phase 2 trial interim results[J]. Nat Med, 2024, 30(9): 2586-2595. DOI: 10.1038/s41591-024-03109-0.
pmid: 38992129 |
[53] |
He Z, Wang S, Qiao G, et al. Clinical efficacy of intra-cavitary infusions of autologous dendritic cell/cytokine-induced killer cell products for the treatment of refractory malignant pleural effusions and ascites[J]. Am J Transl Res, 2020, 12(7): 3940-3952.
pmid: 32774747 |
[54] |
Huang SM, Jeng LB, Shyu WC, et al. Combination treatment of pembrolizumab with DC-CIK cell therapy for advanced hepatocellular carcinoma: a case report[J]. Biomedicine (Taipei), 2023, 13(3): 57-62. DOI: 10.37796/2211-8039.1414.
pmid: 37937058 |
[55] | Mehling B, Wu D, O'Gorman E, et al. Case report: dendritic cell-cytokine induced killer cell therapy in subjects with chronic lymphocytic leukemia and peritoneal cancer[J]. Front Med (Lausanne), 2023, 10: 1240330. DOI: 10.3389/fmed.2023.1240330. |
[56] | Jung M, Lee JB, Kim HS, et al. First-in-human phase 1 study of a B cell-and monocyte-based immunotherapeutic vaccine against HER2-positive advanced gastric cancer[J]. Cancer Res treat, 2024, 56(1): 208-218. DOI: 10.4143/crt.2022.1328. |
[57] |
Redman JM, Tsai YT, Weinberg BA, et al. A randomized phase Ⅱ trial of mFOLFOX6 + bevacizumab alone or with AdCEA vaccine + avelumab immunotherapy for untreated metastatic colorectal cancer[J]. Oncologist, 2022, 27(3): 198-209. DOI: 10.1093/oncolo/oyab046.
pmid: 35274710 |
[58] |
Hubbard JM, Tőke ER, Moretto R, et al. Safety and activity of PolyPEPI1018 combined with maintenance therapy in metastatic colorectal cancer: an open-label, multicenter, phase Ⅰb study[J]. Clin cancer Res, 2022, 28(13): 2818-2829. DOI: 10.1158/1078-0432.Ccr-22-0112.
pmid: 35472243 |
[59] | Li X, Ji Z, Li Y. Peritoneal carcinomatosis diagnosis and treatment in China: focusing on training and collaboration[J]. Indian J Surg Oncol, 2019, 10(Suppl 1): 12-18. DOI: 10.1007/s13193-019-00890-0. |
[60] |
Luo Q, Zhang L, Luo C, et al. Emerging strategies in cancer therapy combining chemotherapy with immunotherapy[J]. Cancer Lett, 2019, 454: 191-203. DOI: 10.1016/j.canlet.2019.04.017.
pmid: 30998963 |
[61] | Zhou J, Wang J, Wang W, et al. Pathological complete response achieved with XELOX chemotherapy, HIPEC, and anti-PD-1 immunotherapy in stage Ⅳ gastric adenocarcinoma with peritoneal metastasis: a case report and review of the literature[J]. J Gastrointest Cancer, 2024, 55(3): 1441-1447. DOI: 10.1007/s12029-024-01056-0. |
[62] | Arno MC, Inam M, Weems AC, et al. Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties[J]. Nat Commun, 2020, 11(1): 1420. DOI: 10.1038/s41467-020-15206-y. |
[63] | Yu W, Uzun Y, Zhu Q, et al. scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data[J]. Genome Biol, 2020, 21(1): 94. DOI: 10.1186/s13059-020-02008-0. |
[1] | 李锦鑫, 顾芬芬. 信迪利单抗联合多西他赛治疗宫颈癌疗效及对实验室指标的影响[J]. 国际肿瘤学杂志, 2025, 52(6): 366-373. |
[2] | 四川省抗癌协会食管癌专业委员会. 晚期食管鳞状细胞癌一线免疫治疗联合化疗进展后的诊疗策略——四川省专家共识[J]. 国际肿瘤学杂志, 2025, 52(5): 273-281. |
[3] | 陈茹雁, 付振明. 晚期肾细胞癌的免疫治疗现状与进展[J]. 国际肿瘤学杂志, 2025, 52(2): 124-128. |
[4] | 王秋实, 徐瑞涛, 李松, 褚佳慧, 刘联. 免疫检查点抑制剂相关多器官不良反应研究进展[J]. 国际肿瘤学杂志, 2024, 51(8): 510-514. |
[5] | 莫慧敏, 蔡宇森, 张增瑞, 朱文钿. 联合应用免疫检查点抑制剂在肝细胞癌合并门静脉癌栓治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(8): 520-525. |
[6] | 韩艺, 张同梅, 齐菲, 张泳. 肺大细胞神经内分泌癌临床分子诊断和治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(7): 468-473. |
[7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[9] | 钟楠, 王淡瑜, 周欢欢, 刘宁, 戴纬, 刘黎琼, 郭智. CD30单抗联合PD-1抑制剂治疗复发难治性霍奇金淋巴瘤的疗效与安全性[J]. 国际肿瘤学杂志, 2024, 51(4): 245-248. |
[10] | 钱晓涛, 石子宜, 胡格. Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
[11] | 解淑萍, 孙亚红, 汪超. 早期肿瘤标志物联合NLR、PLR预测胃癌免疫治疗疗效[J]. 国际肿瘤学杂志, 2024, 51(3): 157-165. |
[12] | 陈欣祎, 翁一鸣, 魏家燕, 王劲松, 彭敏. 免疫检查点抑制剂在复发或转移性头颈部鳞状细胞癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 553-557. |
[13] | 邓隽军, 赵大勇, 李淼. 免疫检查点抑制剂在非小细胞肺癌治疗中的不良反应及危险因素[J]. 国际肿瘤学杂志, 2023, 50(9): 564-568. |
[14] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英. 免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
[15] | 过慈良, 江春平, 吴俊华. 肠道菌群与肿瘤免疫治疗[J]. 国际肿瘤学杂志, 2023, 50(7): 432-436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||