| [1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
|
| [2] |
Yao J, Huang X, Sun Q, et al. Hypoxic stimulation of DCLK1 transcription and alternative-promoter switching fuels tumor malignancy in clear cell renal cell carcinoma[J]. Cell Death Dis, 2025, 16(1): 594. DOI: 10.1038/s41419-025-07916-2.
|
| [3] |
Lin Y, Cai H. Biological functions and therapeutic potential of SHCBP1 in human cancer[J]. Biomed Pharmacother, 2023, 160: 114362. DOI: 10.1016/j.biopha.2023.114362.
|
| [4] |
Wang N, Zhu L, Wang L, et al. Identification of SHCBP1 as a potential biomarker involving diagnosis, prognosis, and tumor immune microenvironment across multiple cancers[J]. Comput Struct Biotechnol J, 2022, 20: 3106-3119. DOI: 10.1016/j.csbj.2022.06.039.
|
| [5] |
Zhou M, Duan L, Chen J, et al. The dynamic role of nucleoprotein SHCBP1 in the cancer cell cycle and its potential as a synergistic target for DNA-damaging agents in cancer therapy[J]. Cell Commun Signal, 2024, 22(1): 131. DOI: 10.1186/s12964-024-01513-0.
|
| [6] |
Yu X, Sun Z, Nie S, et al. Effects of resveratrol on mouse B16 melanoma cell proliferation through the SHCBP1-ERK1/2 signaling pathway[J]. Molecules, 2023, 28(22): 7614. DOI: 10.3390/molecules28227614.
|
| [7] |
Deng B, Li A, Zhu Y, et al. SHCBP1 contributes to the proliferation and self‑renewal of cervical cancer cells and activation of the NF‑κB signaling pathway through EIF5A[J]. Oncol Lett, 2023, 25(6): 246. DOI: 10.3892/ol.2023.13832.
|
| [8] |
Lu H, Yin M, Wang L, et al. FGF13 interaction with SHCBP1 activates AKT-GSK3α/β signaling and promotes the proliferation of A549 cells[J]. Cancer Biol Ther, 2020, 21(11): 1014-1024. DOI: 10.1080/15384047.2020.1824512.
pmid: 33064958
|
| [9] |
Tang C, Peng S, Chen Y, et al. SHCBP1 is a novel regulator of PLK1 phosphorylation and promotes prostate cancer bone metastasis[J]. MedComm, 2025, 6(2): e70082. DOI: 10.1002/mco2.70082.
|
| [10] |
Dai Y, Hu C, Zhou H, et al. Rucaparib inhibits lung adenocarcinoma cell proliferation and migration via the SHCBP1/CDK1 pathway[J]. FEBS J, 2023, 290(24): 5720-5743. DOI: 10.1111/febs.16933.
pmid: 37581853
|
| [11] |
Sun Y, Pan H, He Y, et al. Functional roles of the SHCBP1 and KIF23 interaction in modulating the cell-cycle and cisplatin resistance of head and neck squamous cell carcinoma[J]. Head Neck, 2022, 44(3): 591-605. DOI: 10.1002/hed.26961.
|
| [12] |
Yang C, Hu JF, Zhan Q, et al. SHCBP1 interacting with EOGT enhances O-GlcNAcylation of NOTCH1 and promotes the development of pancreatic cancer[J]. Genomics, 2021, 113(2): 827-842. DOI: 10.1016/j.ygeno.2021.01.010.
pmid: 33515675
|
| [13] |
Gao W, Qi CQ, Feng MG, et al. SOX2-induced upregulation of lncRNA LINC01561 promotes non-small-cell lung carcinoma progression by sponging miR-760 to modulate SHCBP1 expression[J]. J Cell Physiol, 2020, 235(10): 6684-6696. DOI: 10.1002/jcp.29564.
pmid: 32003010
|
| [14] |
Qi G, Ma H, Teng K, et al. SHCBP1 promotes cisplatin resistance of ovarian cancer through AKT/mTOR/Autophagy pathway[J]. Apoptosis, 2025, 30(1): 83-98. DOI: 10.1007/s10495-024-02027-3.
|
| [15] |
Yu X, Feng G, Nian R, et al. SHCBP1 promotes the proliferation of breast cancer cells by inhibiting CXCL2[J]. J Cancer, 2023, 14(18): 3444-3456. DOI: 10.7150/jca.88072.
pmid: 38021148
|
| [16] |
Ren C, Zhou Z, Wang X, et al. SHCBP1 promotes the progression of esophageal squamous cell carcinoma via the TGFβ pathway[J]. Appl Immunohistochem Mol Morphol, 2021, 29(2): 136-143. DOI: 10.1097/pai.0000000000000858.
|
| [17] |
Mo M, Tong S, Yin H, et al. SHCBP1 regulates STAT3/c-Myc signaling activation to promote tumor progression in penile cancer[J]. Am J Cancer Res, 2020, 10(10): 3138-3156.
pmid: 33163262
|
| [18] |
Luo Y, Zhang S, Xie H, et al. Prognosis and immunotherapy significances of a cancer-associated fibroblasts-related gene signature in lung adenocarcinoma[J]. Cell Mol Biol (Noisy-le-grand), 2023, 69(14): 51-61. DOI: 10.14715/cmb/2023.69.14.9.
pmid: 38279482
|
| [19] |
Sauzeau V, Beignet J, Bailly C. Rac1 as a target to treat dysfunctions and cancer of the bladder[J]. Biomedicines, 2022, 10(6): 1357. DOI: 10.3390/biomedicines10061357.
|
| [20] |
Yin H, Zhang C, Wei Z, et al. EGF-induced nuclear translocation of SHCBP1 promotes bladder cancer progression through inhibiting RACGAP1-mediated RAC1 inactivation[J]. Cell Death Dis, 2022, 13(1): 39. DOI: 10.1038/s41419-021-04479-w.
|
| [21] |
Huang H, Cai H, Zhang L, et al. Oroxylin a inhibits carcinogen-induced skin tumorigenesis through inhibition of inflammation by regulating SHCBP1 in mice[J]. Int Immunopharmacol, 2020, 80: 106123. DOI: 10.1016/j.intimp.2019.106123.
|
| [22] |
Zhong A, Chen T, Xing Y, et al. FUCA2 is a prognostic biomarker and correlated with an immunosuppressive microenvironment in pan-cancer[J]. Front Immunol, 2021, 12: 758648. DOI: 10.3389/fimmu.2021.758648.
|
| [23] |
Huang Y, You M, Wu Q, et al. SHCBP1 is a prognostic biomarker related to the tumour immune microenvironment in pan-cancer[J]. Ann Clin Lab Sci, 2022, 52(6): 904-917.
pmid: 36564070
|
| [24] |
Jiang F, Shi Y, Wang Y, et al. Characterization of SHCBP1 to prognosis and immunological landscape in pan-cancer: novel insights to biomarker and therapeutic targets[J]. Aging (Albany NY), 2023, 15(6): 2066-2081. DOI: 10.18632/aging.204591.
|
| [25] |
Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer[J]. Nat Rev Cancer, 2021, 21(6): 345-359. DOI: 10.1038/s41568-021-00347-z.
pmid: 33837297
|
| [26] |
Chen G, Li W, Ge R, et al. NUSAP1 promotes immunity and apoptosis by the SHCBP1/JAK2/STAT3 phosphorylation pathway to induce dendritic cell generation in hepatocellular carcinoma[J]. J Immunother, 2025, 48(2): 46-57. DOI: 10.1097/cji.0000000000000531.
|
| [27] |
Mo L, Deng M, Adhav R, et al. Oncogenic activation of SMYD3-SHCBP1 promotes breast cancer development and is coupled with resistance to immune therapy[J]. Cell Death Dis, 2025, 16(1): 220. DOI: 10.1038/s41419-025-07570-8.
|
| [28] |
Xu N, Wu YP, Yin HB, et al. SHCBP1 promotes tumor cell proli-feration, migration, and invasion, and is associated with poor prostate cancer prognosis[J]. J Cancer Res Clin Oncol, 2020, 146(8): 1953-1969. DOI: 10.1007/s00432-020-03247-1.
|
| [29] |
Lin K, Hu K, Chen Q, et al. The function and immune role of cuproptosis associated hub gene in Barrett's esophagus and esophageal adenocarcinoma[J]. Biosci Trends, 2023, 17(5): 381-392. DOI: 10.5582/bst.2023.01164.
pmid: 37866883
|
| [30] |
Zhou Q, Liu X, Lv M, et al. Genes that predict poor prognosis in breast cancer via bioinformatical analysis[J]. Biomed Res Int, 2021, 2021: 6649660. DOI: 10.1155/2021/6649660.
|
| [31] |
Liu N, Zhang GD, Bai P, et al. Eight hub genes as potential biomarkers for breast cancer diagnosis and prognosis: a TCGA-based study[J]. World J Clin Oncol, 2022, 13(8): 675-688. DOI: 10.5306/wjco.v13.i8.675.
pmid: 36160462
|
| [32] |
Senter NC, McCulley A, Kuznetsov VA, et al. Identification of recurrent chromosome breaks underlying structural rearrangements in mammary cancer cell lines[J]. Genes (Basel), 2022, 13(7): 1228. DOI: 10.3390/genes13071228.
|
| [33] |
Shi W, Zhang G, Ma Z, et al. Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer[J]. Nat Commun, 2021, 12(1): 2812. DOI: 10.1038/s41467-021-23053-8.
|
| [34] |
Moghimi A, Bani Hosseinian N, Mahdipour M, et al. Deciphering the molecular complexity of hepatocellular carcinoma: unveiling novel biomarkers and therapeutic targets through advanced bioinformatics analysis[J]. Cancer Rep (Hoboken), 2024, 7(8): e2152. DOI: 10.1002/cnr2.2152.
|
| [35] |
Cao J, Yu C. Identification of immune infiltration and prognostic biomarkers in small cell lung cancer based on bioinformatic methods from 3 studies[J]. Comb Chem High Throughput Screen, 2023, 26(3): 507-516. DOI: 10.2174/1386207325666220408092925.
|