
国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (11): 726-731.doi: 10.3760/cma.j.cn371439-20250619-00124
收稿日期:2025-06-19
修回日期:2025-07-08
出版日期:2025-11-08
发布日期:2025-12-21
通讯作者:
孙鹏飞
E-mail:ery_sunpf@lzu.edu.cn
Ma Yongjia1, Peng Siyu1, Sun Pengfei2(
)
Received:2025-06-19
Revised:2025-07-08
Online:2025-11-08
Published:2025-12-21
Contact:
Sun Pengfei
E-mail:ery_sunpf@lzu.edu.cn
摘要:
在宫颈癌的临床研究中,放化疗联合免疫治疗取得了一定成果,程序性死亡受体1/程序性死亡受体配体1抑制剂在多项临床试验中亦展现出积极的结果。人乳头状瘤病毒多肽疫苗、DNA疫苗、肿瘤浸润淋巴细胞疗法和双特异性抗体等新型免疫疗法也在复发或转移性宫颈癌治疗中有所应用,展现出显著的抗肿瘤活性、重塑免疫微环境、适配个体化治疗及与多模式联合增效等潜力。深入探讨联合治疗方案的协同机制及多种疗法在宫颈癌治疗中的应用和发展限制因素,可为进一步优化宫颈癌的治疗策略提供思路。
马永佳, 彭思雨, 孙鹏飞. 宫颈癌放化疗联合免疫治疗的研究进展[J]. 国际肿瘤学杂志, 2025, 52(11): 726-731.
Ma Yongjia, Peng Siyu, Sun Pengfei. Research progress on combined radiotherapy, chemotherapy, and immunotherapy for cervical cancer[J]. Journal of International Oncology, 2025, 52(11): 726-731.
| [1] | Filho AM, Laversanne M, Ferlay J, et al. The GLOBOCAN 2022 cancer estimates: data sources, methods, and a snapshot of the cancer burden worldwide[J]. Int J Cancer, 2025, 156(7): 1336-1346. DOI: 10.1002/ijc.35278. |
| [2] | Chen SW, Liang JA, Yang SN, et al. Radiation injury to intestine following hysterectomy and adjuvant radiotherapy for cervical cancer[J]. Gynecol Oncol, 2004, 95(1): 208-214. DOI: 10.1016/j.ygyno.2004.07.003. |
| [3] | Assi S, Barling M, Al-Hamid A, et al. Exploring the adverse effects of chemotherapeutic agents used in the treatment of cervical and ovarian cancer from the patients' perspective: a content analysis of the online discussion forums[J]. Eur J Hosp Pharm, 2021, 28(Suppl 2): e35-e40. DOI: 10.1136/ejhpharm-2019-002162. |
| [4] |
Lorusso D, Xiang Y, Hasegawa K, et al. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): a randomised, double-blind, phase 3 clinical trial[J]. Lancet, 2024, 403(10434): 1341-1350. DOI: 10.1016/s0140-6736(24)00317-9.
pmid: 38521086 |
| [5] | Xue J, Yan X, Ding Q, et al. Effect of neoadjuvant chemotherapy on the immune microenvironment of gynaecological tumours[J]. Ann Med, 2023, 55(2): 2282181. DOI: 10.1080/07853890.2023.2282181. |
| [6] |
Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift[J]. J Natl Cancer Inst, 2013, 105(4): 256-265. DOI: 10.1093/jnci/djs629.
pmid: 23291374 |
| [7] | Dorta-Estremera S, Colbert LE, Nookala SS, et al. Kinetics of intratumoral immune cell activation during chemoradiation for cervical cancer[J]. Int J Radiat Oncol Biol Phys, 2018, 102(3): 593-600. DOI: 10.1016/j.ijrobp.2018.06.404. |
| [8] | Du SS, Chen GW, Yang P, et al. Radiation therapy promotes hepatocellular carcinoma immune cloaking via PD-L1 upregulation induced by cGAS-STING activation[J]. Int J Radiat Oncol Biol Phys, 2022, 112(5): 1243-1255. DOI: 10.1016/j.ijrobp.2021.12.162. |
| [9] | Melief CJM, Welters MJP, Vergote I, et al. Strong vaccine responses during chemotherapy are associated with prolonged cancer survival[J]. Sci Transl Med, 2020, 12(535): eaaz8235. DOI: 10.1126/scitranslmed.aaz8235. |
| [10] | Kim NR, Kim YJ. Oxaliplatin regulates myeloid-derived suppressor cell-mediated immunosuppression via downregulation of nuclear factor-κB signaling[J]. Cancer Med, 2019, 8(1): 276-288. DOI: 10.1002/cam4.1878. |
| [11] |
Liang Y, Lü W, Zhang X, et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes before and after neoadjuvant chemotherapy in cervical cancer[J]. Diagn Pathol, 2018, 13(1): 93. DOI: 10.1186/s13000-018-0770-4.
pmid: 30474571 |
| [12] | Kast F, Klein C, Umaña P, et al. Advances in identification and selection of personalized neoantigen/T-cell pairs for autologous adoptive T cell therapies[J]. Oncoimmunology, 2021, 10(1): 1869389. DOI: 10.1080/2162402x.2020.1869389. |
| [13] | Rodrigues M, Vanoni G, Loap P, et al. Nivolumab plus chemoradiotherapy in locally-advanced cervical cancer: the NICOL phase 1 trial[J]. Nat Commun, 2023, 14(1): 3698. DOI: 10.1038/s41467-023-39383-8. |
| [14] | Mayadev J, Zamarin D, Deng W, et al. Neoadjuvant or concurrent atezolizumab with chemoradiation for locally advanced cervical cancer: a randomized phase Ⅰ trial[J]. Nat Commun, 2025, 16(1): 553. DOI: 10.1038/s41467-024-55200-2. |
| [15] | Knisely A, Ahmed J, Stephen B, et al. Phase 1/2 trial of avelumab combined with utomilumab (4-1BB agonist), PF-04518600 (OX40 agonist), or radiotherapy in patients with advanced gynecologic malignancies[J]. Cancer, 2024, 130(3): 400-409. DOI: 10.1002/cncr.35063. |
| [16] |
Lorusso D, Xiang Y, Hasegawa K, et al. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2024, 404(10460): 1321-1332. DOI: 10.1016/S0140-6736(24)01808-7.
pmid: 39288779 |
| [17] |
How JA, Jazaeri AA. Immunotherapy in locally advanced cervical cancer: integrating KEYNOTE-A18 into management strategies[J]. Med, 2024, 5(6): 487-489. DOI: 10.1016/j.medj.2024.05.001.
pmid: 38878765 |
| [18] |
Monk BJ, Toita T, Wu X, et al. Durvalumab versus placebo with chemoradiotherapy for locally advanced cervical cancer (CALLA): a randomised, double-blind, phase 3 trial[J]. Lancet Oncol, 2023, 24(12): 1334-1348. DOI: 10.1016/s1470-2045(23)00479-5.
pmid: 38039991 |
| [19] | 张露, 蒋华, 林州, 等. 免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. DOI: 10.3760/cma.j.cn371439-20230227-00091. |
| [20] |
Li K, Chen J, Hu Y, et al. Neoadjuvant chemotherapy plus camrelizumab for locally advanced cervical cancer (NACI study): a multicentre, single-arm, phase 2 trial[J]. Lancet Oncol, 2024, 25(1): 76-85. DOI: 10.1016/s1470-2045(23)00531-4.
pmid: 38048802 |
| [21] | Zheng X, Gu H, Cao X, et al. Tislelizumab for cervical cancer: a retrospective study and analysis of correlative blood biomarkers[J]. Front Immunol, 2023, 14: 1113369. DOI: 10.3389/fimmu.2023.1113369. |
| [22] | Xia L, Wang J, Wang C, et al. Efficacy and safety of zimberelimab (GLS-010) monotherapy in patients with recurrent or metastatic cervical cancer: a multicenter, single-arm, phase Ⅱ study[J]. Int J Gynecol Cancer, 2023, 33(12): 1861-1868. DOI: 10.1136/ijgc-2023-004705. |
| [23] | Ni BQ, Pan MM, He LX, et al. Zimberelimab combined with systemic therapy extended tumor control in post-radiotherapy cervical cancer with brain metastases: a case report[J]. J Obstet Gynaecol Res, 2024, 50(4): 740-745. DOI: 10.1111/jog.15887. |
| [24] | Ou D, Cai R, Qi WX, et al. Toripalimab combined with definitive chemoradiotherapy for locally advanced cervical squamous cell carcinoma patients (TRACE): a single-arm, phase Ⅰ/Ⅱ trial[J]. Cancer Immunol Immunother, 2024, 73(12): 244. DOI: 10.1007/s00262-024-03823-1. |
| [25] |
Massarelli E, William W, Johnson F, et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial[J]. JAMA Oncol, 2019, 5(1): 67-73. DOI: 10.1001/jamaoncol.2018.4051.
pmid: 30267032 |
| [26] | Hasan Y, Furtado L, Tergas A, et al. A phase 1 trial assessing the safety and tolerability of a therapeutic DNA vaccination against HPV16 and HPV18 E6/E7 oncogenes after chemoradiation for cervical cancer[J]. Int J Radiat Oncol Biol Phys, 2020, 107(3): 487-498. DOI: 10.1016/j.ijrobp.2020.02.031. |
| [27] | Huang H, Nie CP, Liu XF, et al. Phase Ⅰ study of adjuvant immunotherapy with autologous tumor-infiltrating lymphocytes in locally advanced cervical cancer[J]. J Clin Invest, 2022, 132(15): e157726. DOI: 10.1172/jci157726. |
| [28] | O'Malley DM, Neffa M, Monk BJ, et al. Dual PD-1 and CTLA-4 checkpoint blockade using balstilimab and zalifrelimab combination as second-line treatment for advanced cervical cancer: an open-label phase Ⅱ study[J]. J Clin Oncol, 2022, 40(7): 762-771. DOI: 10.1200/jco.21.02067. |
| [29] |
Wu X, Sun Y, Yang H, et al. Cadonilimab plus platinum-based chemotherapy with or without bevacizumab as first-line treatment for persistent, recurrent, or metastatic cervical cancer (COMPASSION-16): a randomised, double-blind, placebo-controlled phase 3 trial in China[J]. Lancet, 2024, 404(10463): 1668-1676. DOI: 10.1016/s0140-6736(24)02135-4.
pmid: 39426385 |
| [30] |
Berenguer Frances MA, Linares-Galiana I, Cañas Cortés R, et al. Changes of CD68, CD163, and PD-L1 tumor expression during high-dose-rate and pulsed-dose-rate brachytherapy for cervical cancer[J]. Brachytherapy, 2020, 19(1): 51-59. DOI: 10.1016/j.brachy.2019.09.009.
pmid: 31690516 |
| [31] | Da Silva DM, Enserro DM, Mayadev JS, et al. Immune activation in patients with locally advanced cervical cancer treated with ipilimumab following definitive chemoradiation (GOG-9929)[J]. Clin Cancer Res, 2020, 26(21): 5621-30. DOI: 10.1158/1078-0432.Ccr-20-0776. |
| [32] | Li R, Liu Y, Yin R, et al. The dynamic alternation of local and systemic tumor immune microenvironment during concurrent chemoradiotherapy of cervical cancer: a prospective clinical trial[J]. Int J Radiat Oncol Biol Phys, 2021, 110(5): 1432-1441. DOI: 10.1016/j.ijrobp.2021.03.003. |
| [33] | Ma CY, Zhao J, Qian KY, et al. Analysis of nutritional risk, skeletal muscle depletion, and lipid metabolism phenotype in acute radiation enteritis[J]. World J Gastrointest Surg, 2023, 15(12): 2831-2843. DOI: 10.4240/wjgs.v15.i12.2831. |
| [34] | Dover L, Dulaney C. Spine stereotactic radiosurgery, prostate radiation frequency, adjuvant chemotherapy for cervical cancer, bacteria and radiation dermatitis, and breast conservation therapy for multi-focal disease[J]. Pract Radiat Oncol, 2023, 13(5): 379-383. DOI: 10.1016/j.prro.2023.06.002. |
| [35] | Tu Y, Luo L, Zhou Q, et al. Fecal microbiota transplantation repairs radiation enteritis through modulating the gut microbiota-mediated tryptophan metabolism[J]. Radiat Res, 2024, 201(6): 572-585. DOI: 10.1667/rade-23-00189.1. |
| [36] | Monk BJ, Colombo N, Tewari KS, et al. First-line pembrolizumab+chemotherapy versus placebo+chemotherapy for persistent, recurrent, or metastatic cervical cancer: final overall survival results of KEYNOTE-826[J]. J Clin Oncol, 2023, 41(36): 5505-5511. DOI: 10.1200/jco.23.00914. |
| [37] | Gutiérrez-Hoya A, Soto-Cruz I. NK cell regulation in cervical cancer and strategies for immunotherapy[J]. Cells, 2021, 10(11): 3104. DOI: 10.3390/cells10113104. |
| [38] |
Monk BJ, Tewari KS, Dubot C, et al. Health-related quality of life with pembrolizumab or placebo plus chemotherapy with or without bevacizumab for persistent, recurrent, or metastatic cervical cancer (KEYNOTE-826): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2023, 24(4): 392-402. DOI: 10.1016/s1470-2045(23)00052-9.
pmid: 36878237 |
| [39] | Colombo N, Dubot C, Lorusso D, et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer[J]. N Engl J Med, 2021, 385(20): 1856-1867. DOI: 10.1056/NEJMoa2112435. |
| [40] | 张力忆, 蒋奉希, 桂定清. 贝伐珠单抗联合紫杉醇+卡铂治疗持续性或复发性宫颈癌的临床观察[J]. 中国药房, 2024, 35(17): 2126-2130. DOI: 10.6039/j.issn.1001-0408.2024.17.12. |
| [41] | 向阳, 曹金龙, 聂桂梅, 等. 贝伐珠单抗联合紫杉醇和卡铂治疗复发/转移性宫颈癌患者的临床研究[J]. 中国临床药理学杂志, 2024, 40(8): 1121-1125. DOI: 10.13699/j.cnki.1001-6821.2024.08.007. |
| [42] | Zhang Z, Ma Q, Zhang L, et al. Human papillomavirus and cervical cancer in the microbial world: exploring the vaginal microecology[J]. Front Cell Infect Microbiol, 2024, 14: 1325500. DOI: 10.3389/fcimb.2024.1325500. |
| [1] | 吴松友, 王刚, 王文玲, 董洪敏, 陈唯唯, 李小凯, 陈望花, 左凯. 直肠癌盆腔调强放疗中腹围对肠道受照剂量体积及急性肠道毒性影响的前瞻性队列研究[J]. 国际肿瘤学杂志, 2025, 52(9): 566-575. |
| [2] | 刘美, 胡玉崇, 李凤桐, 朝乐门, 柳檬, 亢琳琳. SHCBP1在恶性肿瘤中的作用机制及临床研究进展[J]. 国际肿瘤学杂志, 2025, 52(9): 583-586. |
| [3] | 澈根, 乌日汗, 朱恬恬, 东丽. 非小细胞肺癌中cGAS-STING信号通路的作用机制及其靶向治疗策略[J]. 国际肿瘤学杂志, 2025, 52(9): 587-591. |
| [4] | 宋美娇, 张锡泉, 沈庆林. 原发灶不明的转移性癌1例并文献复习[J]. 国际肿瘤学杂志, 2025, 52(9): 606-608. |
| [5] | 吴学慧, 李松, 刘联. TCR测序在肿瘤免疫治疗中的临床应用[J]. 国际肿瘤学杂志, 2025, 52(8): 523-527. |
| [6] | 李锦鑫, 顾芬芬. 信迪利单抗联合多西他赛治疗宫颈癌疗效及对实验室指标的影响[J]. 国际肿瘤学杂志, 2025, 52(6): 366-373. |
| [7] | 王旻, 温馨格, 魏毓正, 孙诚诚, 周婷婷. 纳武利尤单抗联合化疗治疗胃癌假性进展1例并文献复习[J]. 国际肿瘤学杂志, 2025, 52(6): 395-397. |
| [8] | 孙玉娇, 于美丽, 马文静, 孙龙美, 朱兆峰, 郑媛媛. 可切除局部晚期食管鳞状细胞癌新辅助免疫治疗的临床应用进展[J]. 国际肿瘤学杂志, 2025, 52(5): 309-314. |
| [9] | 刘海燕, 张超. 基于CT影像加权组学评分构建非小细胞肺癌的免疫治疗疗效预测模型[J]. 国际肿瘤学杂志, 2025, 52(4): 202-208. |
| [10] | 刘前怡, 董洪敏, 王文玲, 王刚, 陈望花. 放疗联合化疗和免疫治疗对HER2阴性局部晚期或晚期胃癌的临床疗效和安全性[J]. 国际肿瘤学杂志, 2025, 52(4): 209-216. |
| [11] | 周晓宇, 蒲雪峰, 龙树林, 李露, 何文英. Ⅰ、Ⅱ期宫颈癌患者术后T细胞亚群变化特征及与术后淋巴结转移的关系[J]. 国际肿瘤学杂志, 2025, 52(4): 224-230. |
| [12] | 文英美, 夏锦雄, 王园园, 姚颐. 放疗对抗肿瘤免疫的影响:从基础到临床[J]. 国际肿瘤学杂志, 2025, 52(4): 231-236. |
| [13] | 韩涛, 贾沛沛, 鲁静. iRhom1、iRhom2、TNF-α水平对宫颈癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2025, 52(3): 158-162. |
| [14] | 王智颖, 盛立军. 外周血标志物在非小细胞肺癌免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 180-185. |
| [15] | 王熙博, 田宝文, 陈士巧. Breg细胞在肿瘤免疫逃逸中的机制及相关治疗靶点[J]. 国际肿瘤学杂志, 2025, 52(2): 107-112. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||