[1] |
张碧霞, 丁江华. EGFR突变型非小细胞肺癌EGFR-TKI获得性耐药后免疫治疗现状[J]. 国际肿瘤学杂志, 2023, 50(2): 97-101. DOI: 10.3760/cma.j.cn371439-20220719-00020.
|
[2] |
Chen P, Liu Y, Wen Y, et al. Non-small cell lung cancer in China[J]. Cancer Commun (Lond), 2022, 42(10): 937-970. DOI: 10.1002/cac2.12359.
|
[3] |
Memmott RM, Wolfe AR, Carbone DP, et al. Predictors of response, progression-free survival, and overall survival in patients with lung cancer treated with immune checkpoint inhibitors[J]. J Thorac Oncol, 2021, 16(7): 1086-1098. DOI: 10.1016/j.jtho.2021.03.017.
pmid: 33845212
|
[4] |
Sakurai E, Ishizawa H, Kiriyama Y, et al. γH2AX, a DNA double-strand break marker, correlates with PD-L1 expression in smoking-related lung adenocarcinoma[J]. Int J Mol Sci, 2022, 23(12): 6679. DOI: 10.3390/ijms23126679.
|
[5] |
Cheng X, Wang L, Zhang Z. Prognostic significance of PD-L1 expression and CD8+ TILs density for disease-free survival in surgically resected lung squamous cell carcinoma: a retrospective study[J]. J Thorac Dis, 2022, 14(6): 2224-2234. DOI: 10.21037/jtd-22-630.
|
[6] |
Jeong H, Park HB, Hong J, et al. Identifying coronary artery calcification using chest x-ray radiographs and machine learning: the role of the radiomics score[J]. J Thorac Imaging, 2024, 39(2): 119-126. DOI: 10.1097/RTI.0000000000000757.
|
[7] |
Guo Y, Xie X, Tang W, et al. Noninvasive identification of HER2-low-positive status by MRI-based deep learning radiomics predicts the disease-free survival of patients with breast cancer[J]. Eur Radiol, 2024, 34(2): 899-913. DOI: 10.1007/s00330-023-09990-6.
|
[8] |
Liu Y, Fu Q, Peng X, et al. Attention-based deep multiple-instance learning for classifying circular RNA and other long non-coding RNA[J]. Genes (Basel), 2021, 12(12): 2018. DOI: 10.3390/genes12122018.
|
[9] |
Moranguinho J, Pereira T, Ramos B, et al. Attention based deep multiple instance learning approach for lung cancer prediction using histopathological images[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 2852-2855. DOI: 10.1109/EMBC46164.2021.9631000.
pmid: 34891842
|
[10] |
中华医学会, 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2019版)[J]. 中华肿瘤杂志, 2020, 42(4): 257-287. DOI: 10.3760/cma.j.cn112152-20200120-00049.
|
[11] |
Winter KS, Hofmann FO, Thierfelder KM, et al. Towards volumetric thresholds in RECIST 1.1: therapeutic response assessment in hepatic metastases[J]. Eur Radiol, 2018, 28(11): 4839-4848. DOI: 10.1007/s00330-018-5424-0.
pmid: 29736851
|
[12] |
Zhu Z, Chen M, Hu G, et al. A pre-treatment CT-based weighted radiomic approach combined with clinical characteristics to predict durable clinical benefits of immunotherapy in advanced lung cancer[J]. Eur Radiol, 2023, 33(6): 3918-3930. DOI: 10.1007/s00330-022-09337-7.
|
[13] |
Long Y, Xiong Q, Song Q, et al. Immunotherapy plus chemotherapy showed superior clinical benefit to chemotherapy alone in advanced NSCLC patients after progression on osimertinib[J]. Thorac Cancer, 2022, 13(3): 394-403. DOI: 10.1111/1759-7714.14271.
|
[14] |
杜希剑, 章凯敏, 陈斌, 等. CT影像组学对非小细胞肺癌免疫治疗疗效的预测价值[J]. 实用放射学杂志, 2023, 39(4): 548-551, 599. DOI: 10.3969/j.issn.1002-1671.2023.04.008.
|
[15] |
Bracci S, Dolciami M, Trobiani C, et al. Quantitative CT texture analysis in predicting PD-L1 expression in locally advanced or metastatic NSCLC patients[J]. Radiol Med, 2021, 126(11): 1425-1433. DOI: 10.1007/s11547-021-01399-9.
pmid: 34373989
|
[16] |
Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study[J]. Lancet Oncol, 2018, 19(9): 1180-1191. DOI: 10.1016/S1470-2045(18)30413-3.
pmid: 30120041
|
[17] |
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 2443-2454. DOI: 10.1056/NEJMoa1200690.
|
[18] |
余镔. 吸烟史影响免疫检查点抑制剂在晚期非小细胞肺癌中疗效的Meta分析[D]. 南昌: 南昌大学, 2021. DOI: 10.27232/d.cnki.gnchu.2021.000258.
|
[19] |
Kinoshita T, Kudo-Saito C, Muramatsu R, et al. Determination of poor prognostic immune features of tumour microenvironment in non-smoking patients with lung adenocarcinoma[J]. Eur J Cancer, 2017, 86: 15-27. DOI: 10.1016/j.ejca.2017.08.026.
pmid: 28950145
|
[20] |
Dall'Olio FG, Marabelle A, Caramella C. Tumour burden and efficacy of immune-checkpoint inhibitors[J]. Nat Rev Clin Oncol, 2022, 19(2): 75-90. DOI: 10.1038/s41571-021-00564-3.
|
[21] |
Shen L, Fu H, Tao G, et al. Pre-immunotherapy contrast-enhanced CT texture-based classification: a useful approach to non-small cell lung cancer immunotherapy efficacy prediction[J]. Front Oncol, 2021, 11: 591106. DOI: 10.3389/fonc.2021.591106.
|
[22] |
Ligero M, Garcia-Ruiz A, Viaplana C, et al. A CT-based radiomics signature is associated with response to immune checkpoint inhibitors in advanced solid tumors[J]. Radiology, 2021, 299(1): 109-119. DOI: 10.1148/radiol.2021200928.
pmid: 33497314
|