[1] |
Filho AM, Laversanne M, Ferlay J, et al. The GLOBOCAN 2022 cancer estimates: data sources, methods, and a snapshot of the cancer burden worldwide[J]. Int J Cancer, 2025, 156(7): 1336-1346. DOI: 10.1002/ijc.35278.
|
[2] |
Jiang D, Zhang L, Liu W, et al. Trends in cancer mortality in China from 2004 to 2018: a nationwide longitudinal study[J]. Cancer Commun, 2021 (10): 1024-1036. DOI: 10.1002/cac2.12195.
|
[3] |
Hou H, Meng Z, Zhao X, et al. Survival of esophageal cancer in China: a pooled analysis on hospital-based studies from 2000 to 2018[J]. Front Oncol, 2019, 9: 548. DOI: 10.3389/fonc.2019.00548.
pmid: 31316913
|
[4] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338.
|
[5] |
付天娇, 暴洪博, 李晨龙, 等. m6A修饰在神经胶质瘤中的研究进展[J]. 现代肿瘤医学, 2023, 31(17): 3296-3300. DOI: 10.3969/j.issn.1672-4992.2023.17.028.
|
[6] |
Heck AM, Russo J, Wilusz J, et al. YTHDF2 destabilizes m6A-modified neural-specific RNAs to restrain differentiation in induced pluripotent stem cells[J]. RNA, 2020, 26(6): 739-755. DOI: 10.1261/rna.073502.119.
|
[7] |
刘培培, 杨梦雪, 严雪冰. m6A甲基化修饰在消化系统肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2021, 48(11): 688-692. DOI: 10.3760/cma.j.cn371439-20210906-00136.
|
[8] |
Frye M, Harada BT, Behm M, et al. RNA modifications modulate gene expression during development[J]. Science, 2018, 361(6409): 1346-1349. DOI: 10.1126/science.aau1646.
pmid: 30262497
|
[9] |
Zhang N, Zuo Y, Peng Y, et al. Function of N6-methyladenosine modification in tumors[J]. J Oncol, 2021, 2021: 6461552. DOI: 10.1155/2021/6461552.
|
[10] |
He PC, He C. m6A RNA methylation: from mechanisms to therapeutic potential[J]. EMBO J, 2021, 40(3): e105977. DOI: 10.15252/embj.2020105977.
|
[11] |
Xue C, Chu Q, Zheng Q, et al. Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and pseudouridine[J]. Signal Transduct Target Ther, 2022, 7(1): 142. DOI: 10.1038/s41392-022-01003-0.
|
[12] |
Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017, 169(7): 1187-1200. DOI: 10.1016/j.cell.2017.05.045.
pmid: 28622506
|
[13] |
Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 74. DOI: 10.1038/s41392-020-00450-x.
|
[14] |
Liu H, Xu Y, Yao B, et al. A novel N6-methyladenosine (m6A)- dependent fate decision for the lncRNA THOR[J]. Cell Death Dis, 2020, 11(8): 613. DOI: 10.1038/s41419-020-02833-y.
|
[15] |
Das Mandal S, Ray PS. Transcriptome-wide analysis reveals spatial correlation between N6-methyladenosine and binding sites of microRNAs and RNA-binding proteins[J]. Genomics, 2021, 113(1): 205-216. DOI: 10.1016/j.ygeno.2020.12.027.
|
[16] |
Wang J, Wang J, Gu Q, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease[J]. Cancer Cell Int, 2020, 20: 347. DOI: 10.1186/s12935-020-01450-1.
pmid: 32742194
|
[17] |
Jiang Y, Wan Y, Gong M, et al. RNA demethylase ALKBH5 promotes ovarian carcinogenesis in a simulated tumour microenvironment through stimulating NF-κB pathway[J]. J Cell Mol Med, 2020, 24(11): 6137-6148. DOI: 10.1111/jcmm.15228.
pmid: 32329191
|
[18] |
Hu Y, Gong C, Li Z, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification[J]. Mol Cancer, 2022, 21(1): 34. DOI: 10.1186/s12943-022-01522-y.
pmid: 35114989
|
[19] |
Nagaki Y, Motoyama S, Yamaguchi T, et al. m6A demethylase ALKBH5 promotes proliferation of esophageal squamous cell carcinoma associated with poor prognosis[J]. Genes Cells, 2020, 25(8): 547-561. DOI: 10.1111/gtc.12792.
|
[20] |
Xue J, Xiao P, Yu X, et al. A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma[J]. Hum Cell, 2021, 34(2): 502-514. DOI: 10.1007/s13577-020-00458-z.
pmid: 33231844
|
[21] |
Xiao D, Fang TX, Lei Y, et al. m6A demethylase ALKBH5 suppression contributes to esophageal squamous cell carcinoma progression[J]. Aging, 2021, 13(17): 21497-21512. DOI: 10.18632/aging.203490.
|
[22] |
Li J, Liu H, Dong S, et al. ALKBH5 is lowly expressed in esophageal squamous cell carcinoma and inhibits the malignant proliferation and invasion of tumor cells[J]. Comput Math Methods Med, 2021, 2021: 1001446. DOI: 10.1155/2021/1001446.
|
[23] |
李磊, 吴良绍, 吴昊, 等. 下调METTL3基因表达影响人骨肉瘤细胞增殖、凋亡和成骨分化的作用及机制探讨[J]. 现代肿瘤医学, 2021, 29(23): 4087-4092. DOI: 10.3969/j.issn.1672-4992.2021.23.003.
|
[24] |
Li S, Jiang F, Chen F, et al. Effect of m6A methyltransferase METTL3-mediated MALAT1/E2F1/AGR2 axis on adriamycin resistance in breast cancer[J]. J Biochem Mol Toxicol, 2022, 36(1): e22922. DOI: 10.1002/jbt.22922.
|
[25] |
Bley N, Schott A, Müller S, et al. IGF2BP1 is a targetable SRC/MAPK-dependent driver of invasive growth in ovarian cancer[J]. RNA Biol, 2021, 18(3): 391-403. DOI: 10.1080/15476286.2020.1812894.
|
[26] |
胡茹, 李东霖, 严雪冰. 甲基转移酶样蛋白14与肿瘤[J]. 国际肿瘤学杂志, 2022, 49(8): 478-483. DOI: 10.3760/cma.j.cn371439-20220511-00092.
|
[27] |
Cui Y, Zhang C, Ma S, et al. RNA m6A demethylase FTO-mediated epigenetic up-regulation of LINC00022 promotes tumorigenesis in esophageal squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2021, 40(1): 294. DOI: 10.1186/s13046-021-02096-1.
pmid: 34544449
|
[28] |
Han H, Yang C, Zhang S, et al. METTL3-mediated m6A mRNA modification promotes esophageal cancer initiation and progression via notch signaling pathway[J]. Mol Ther Nucleic Acids, 2021, 26: 333-346. DOI: 10.1016/j.omtn.2021.07.007.
|
[29] |
Luo G, Qi Y, Lei Z, et al. A potential biomarker of esophageal squamous cell carcinoma WTAP promotes the proliferation and migration of ESCC[J]. Pathol Res Pract, 2022, 238: 154114. DOI: 10.1016/j.prp.2022.154114.
|
[30] |
Yang G, Zhang C, Dong H, et al. Activation and negative feedback regulation of SlHY5 transcription by the SlBBX20/21-SlHY5 transcription factor module in UV-B signaling[J]. Plant Cell, 2022, 34(5): 2038-2055. DOI: 10.1093/plcell/koac064.
|
[31] |
Jiang J, Tang S, Xia J, et al. C9orf140, a novel Axin1-interacting protein, mediates the negative feedback loop of Wnt/β-catenin signaling[J]. Oncogene, 2018, 37(22): 2992-3005. DOI: 10.1038/s41388-018-0166-7.
pmid: 29531269
|
[32] |
Dang TVT, Lee S, Cho H, et al. The LBD11-ROS feedback regulatory loop modulates vascular cambium proliferation and secondary growth in Arabidopsis[J]. Mol Plant, 2023, 16(7): 1131-1145. DOI: 10.1016/j.molp.2023.05.010.
pmid: 37264569
|
[33] |
Zhang L, Cao J, Dong L, et al. TiPARP forms nuclear condensates to degrade HIF-1α and suppress tumorigenesis[J]. Proc Natl Acad Sci U S A, 2020, 117(24): 13447-13456. DOI: 10.1073/pnas.1921815117.
|
[34] |
Qu S, Jin L, Huang H, et al. A positive-feedback loop between HBx and ALKBH5 promotes hepatocellular carcinogenesis[J]. BMC Cancer, 2021, 21(1): 686. DOI: 10.1186/s12885-021-08449-5.
pmid: 34112124
|
[35] |
Liu X, Feng M, Hao X, et al. m6A methylation regulates hypoxia-induced pancreatic cancer glycolytic metabolism through ALKBH5-HDAC4-HIF1α positive feedback loop[J]. Oncogene, 2023, 42(25): 2047-2060. DOI: 10.1038/s41388-023-02704-8.
pmid: 37149664
|
[36] |
Zhang Y, Liu X, Wang Y, et al. The m6A demethylase ALKBH5-mediated upregulation of DDIT4-AS1 maintains pancreatic cancer stemness and suppresses chemosensitivity by activating the mTOR pathway[J]. Mol Cancer, 2022, 21(1): 174. DOI: 10.1186/s12943-022-01647-0.
pmid: 36056355
|
[37] |
Zhang H, Liu Y, Wang W, et al. ALKBH5-mediated m6A modification of lincRNA LINC02551 enhances the stability of DDX24 to promote hepatocellular carcinoma growth and metastasis[J]. Cell Death Dis, 2022, 13(11): 926. DOI: 10.1038/s41419-022-05386-4.
|
[38] |
Shen W, Pu J, Zuo Z, et al. The RNA demethylase ALKBH5 promotes the progression and angiogenesis of lung cancer by regulating the stability of the lncRNA PVT1[J]. Cancer Cell Int, 2022, 22(1): 353. DOI: 10.1186/s12935-022-02770-0.
pmid: 36376862
|
[39] |
Zhang N, Shen Y, Li H, et al. The m6A reader IGF2BP3 promotes acute myeloid leukemia progression by enhancing RCC2 stability[J]. Exp Mol Med, 2022, 54(2): 194-205. DOI: 10.1038/s12276-022-00735-x.
pmid: 35217832
|