[1] |
Kang X, Chen K, Li Y, et al. Personalized targeted therapy for esophageal squamous cell carcinoma[J]. World J Gastroenterol, 2015, 21(25): 7648-7658. DOI: 10.3748/wjg.v21.i25.7648.
doi: 10.3748/wjg.v21.i25.7648
|
[2] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660
|
[3] |
Morgan E, Soerjomataram I, Rumgay H, et al. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: new estimates from GLOBOCAN 2020[J]. Gastroenterology, 2022, 163(3): 649-658.e2. DOI: 10.1053/j.gastro.2022.05.054.
doi: 10.1053/j.gastro.2022.05.054
pmid: 35671803
|
[4] |
Zhang X, Lu N, Wang L, et al. Circular RNAs and esophageal cancer[J]. Cancer Cell Int, 2020, 20: 362. DOI: 10.1186/s12935-020-01451-0.
doi: 10.1186/s12935-020-01451-0
pmid: 32774156
|
[5] |
Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs[J]. Mol Cell, 2018, 71(3): 428-442. DOI: 10.1016/j.molcel.2018.06.034.
doi: S1097-2765(18)30509-4
pmid: 30057200
|
[6] |
Lei M, Zheng G, Ning Q, et al. Translation and functional roles of circular RNAs in human cancer[J]. Mol Cancer, 2020, 19(1): 30. DOI: 10.1186/s12943-020-1135-7.
doi: 10.1186/s12943-020-1135-7
pmid: 32059672
|
[7] |
Barbieri I, Kouzarides T. Role of RNA modifications in cancer[J]. Nat Rev Cancer, 2020, 20(6): 303-322. DOI: 10.1038/s41568-020-0253-2.
doi: 10.1038/s41568-020-0253-2
pmid: 32300195
|
[8] |
Shoda K, Kuwano Y, Ichikawa D, et al. circRNA: a new biomarker and therapeutic target for esophageal cancer[J] Biomedicines, 2022, 10(7): 1643. DOI: 10.3390/biomedicines10071643.
doi: 10.3390/biomedicines10071643
|
[9] |
Liu J, Peng Y, Wei W. Cell cycle on the crossroad of tumorigenesis and cancer therapy[J]. Trends Cell Biol, 2022, 32(1): 30-44. DOI: 10.1016/j.tcb.2021.07.001.
doi: 10.1016/j.tcb.2021.07.001
|
[10] |
Cheung AH, Hui CH, Wong KY, et al. Out of the cycle: impact of cell cycle aberrations on cancer metabolism and metastasis[J]. Int J Cancer, 2023, 152(8): 1510-1525. DOI: 10.1002/ijc.34288.
doi: 10.1002/ijc.34288
|
[11] |
Jamasbi E, Hamelian M, Hossain MA, et al. The cell cycle, cancer development and therapy[J]. Mol Biol Rep, 2022, 49(11): 10875-10883. DOI: 10.1007/s11033-022-07788-1.
doi: 10.1007/s11033-022-07788-1
pmid: 35931874
|
[12] |
Vakili-Samiani S, Khanghah OJ, Gholipour E, et al. Cell cycle involvement in cancer therapy; WEE1 kinase, a potential target as therapeutic strategy[J]. Mutat Res, 2022, 824: 111776. DOI: 10.1016/j.mrfmmm.2022.111776.
doi: 10.1016/j.mrfmmm.2022.111776
|
[13] |
Zhang L, Zhao D, Wang Y, et al. Focal adhesion kinase (FAK) inhibitor-defactinib suppresses the malignant progression of human esophageal squamous cell carcinoma (ESCC) cells via effective blockade of PI3K/AKT axis and downstream molecular network[J]. Mol Carcinog, 2021, 60(2): 113-124. DOI: 10.1002/mc.23273.
doi: 10.1002/mc.23273
|
[14] |
Sun Y, Qian Y, Chen C, et al. Extracellular vesicle IL-32 promotes the M2 macrophage polarization and metastasis of esophageal squamous cell carcinoma via FAK/STAT3 pathway[J]. J Exp Clin Cancer Res, 2022, 41(1): 145. DOI: 10.1186/s13046-022-02348-8.
doi: 10.1186/s13046-022-02348-8
|
[15] |
Chen NP, Aretz J, Fässler R. CDK1-cyclin-B1-induced kindlin degradation drives focal adhesion disassembly at mitotic entry[J]. Nat Cell Biol, 2022, 24(5): 723-736. DOI: 10.1038/s41556-022-00886-z.
doi: 10.1038/s41556-022-00886-z
|
[16] |
Li Y, Burridge K. Cell-cycle-dependent regulation of cell adhesions: adhering to the schedule: three papers reveal unexpected properties of adhesion structures as cells progress through the cell cycle[J]. Bioessays, 2019, 41(1): e1800165. DOI: 10.1002/bies.201800165.
doi: 10.1002/bies.201800165
|
[17] |
Fazeli E, Piltan S, Sadeghi H, et al. Ectopic expression of CYP24A1 circular RNA hsa_circ_0060927 in uterine leiomyomas[J]. J Clin Lab Anal, 2020, 34(4): e23114. DOI: 10.1002/jcla.23114.
doi: 10.1002/jcla.23114
|
[18] |
Xu S, Song Y, Shao Y, et al. Hsa_circ_0060927 is a novel tumor biomarker by sponging miR-195-5p in the malignant transformation of OLK to OSCC[J]. Front Oncol, 2022, 11: 747086. DOI: 10.3389/fonc.2021.747086.
doi: 10.3389/fonc.2021.747086
|
[19] |
Sadeghi H, Heiat M. A novel circular RNA hsa_circ_0060927 may serve as a potential diagnostic biomarker for human colorectal cancer[J]. Mol Biol Rep, 2020, 47(9): 6649-6655. DOI: 10.1007/s11033-020-05716-9.
doi: 10.1007/s11033-020-05716-9
|
[20] |
Chen J, Xu L, Fang M, et al. Hsa_circ_0060927 participates in the regulation of Caudatin on colorectal cancer malignant progression by sponging miR-421/miR-195-5p[J]. J Clin Lab Anal, 2022, 36(5): e24393. DOI: 10.1002/jcla.24393.
doi: 10.1002/jcla.24393
|