
国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (1): 51-54.doi: 10.3760/cma.j.cn371439-20221005-00010
收稿日期:2022-10-05
									
				
											修回日期:2022-11-06
									
				
									
				
											出版日期:2023-01-08
									
				
											发布日期:2023-03-16
									
			通讯作者:
					杨燕萍
											E-mail:yanpingyang@shutcm.edu.cn
												基金资助:
        
               		Ma Xiaoping, Chang Junli, Sun Xingyuan, Yang Yanping(
)
			  
			
			
			
                
        
    
Received:2022-10-05
									
				
											Revised:2022-11-06
									
				
									
				
											Online:2023-01-08
									
				
											Published:2023-03-16
									
			Contact:
					Yang Yanping   
											E-mail:yanpingyang@shutcm.edu.cn
												Supported by:摘要:
骨肉瘤是最常见的原发性实体骨恶性肿瘤,化疗药物的耐药是导致骨肉瘤复发和转移的重要因素。长非编码RNA可通过调节上皮间质转化、细胞自噬、凋亡、药物外排、细胞周期等途径影响骨肉瘤耐药,提示长非编码RNA可能成为治疗骨肉瘤耐药的新靶点。
马小平, 常君丽, 孙星媛, 杨燕萍. 长非编码RNA调控骨肉瘤耐药机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 51-54.
Ma Xiaoping, Chang Junli, Sun Xingyuan, Yang Yanping. Study progression on mechanism of long non-coding RNAs regulating drug resistance in osteosarcoma[J]. Journal of International Oncology, 2023, 50(1): 51-54.
| [1] |  
											  Wu W, Jing D, Meng Z, et al.  FGD1 promotes tumor progression and regulates tumor immune response in osteosarcoma via inhibiting PTEN activity[J]. Theranostics, 2020, 10(6): 2859-2871. DOI: 10.7150/thno.41279. 
											 												 doi: 10.7150/thno.41279 pmid: 32194840  | 
										
| [2] |  
											  Davis LE, Janeway KA, Weiss AR, et al.  Clinical trial enrollment of adolescents and young adults with sarcoma[J]. Cancer, 2017, 123(18): 3434-3440. DOI: 10.1002/cncr.30757. 
											 												 doi: 10.1002/cncr.30757 pmid: 28493547  | 
										
| [3] |  
											  Li Z, Li X, Xu D, et al.  An update on the roles of circular RNAs in osteosarcoma[J]. Cell Prolif, 2021, 54(1): e12936. DOI: 10.1111/cpr.12936. 
											 												 doi: 10.1111/cpr.12936  | 
										
| [4] |  
											  Sasaki R, Osaki M, Okada F. MicroRNA-based diagnosis and treatment of metastatic human osteosarcoma[J]. Cancers (Basel). 2019, 11(4): 553. DOI: 10.3390/cancers11040553. 
											 												 doi: 10.3390/cancers11040553  | 
										
| [5] |  
											  Gill J, Gorlick R. Advancing therapy for osteosarcoma[J]. Nat Rev Clin Oncol, 2021, 18(10): 609-624. DOI: 10.1038/s41571-021-00519-8. 
											 												 doi: 10.1038/s41571-021-00519-8 pmid: 34131316  | 
										
| [6] |  
											  张俊鹏, 于燕燕, 李宝生.  lncRNA、circRNA调控食管鳞状细胞癌放化疗敏感性的作用机制[J]. 国际肿瘤学杂志, 2022, 49(3): 185-189. DOI: 10.3760/cma.j.cn371439-20220104-00032. 
											 												 doi: 10.3760/cma.j.cn371439-20220104-00032  | 
										
| [7] |  
											  Qian X, Zhao J, Yeung PY, et al.  Revealing lncRNA structures and interactions by sequencing-based approaches[J]. Trends Biochem Sci, 2019, 44(1): 33-52. DOI: 10.1016/j.tibs.2018.09.012. 
											 												 doi: S0968-0004(18)30197-X pmid: 30459069  | 
										
| [8] |  
											  Wang JY, Yang Y, Ma Y, et al.  Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma[J]. Biomed Pharmacother, 2020, 121: 109627. DOI: 10.1016/j.biopha.2019.109627. 
											 												 doi: 10.1016/j.biopha.2019.109627  | 
										
| [9] |  
											  Liu SJ, Dang HX, Lim DA, et al.  Long noncoding RNAs in cancer metastasis[J]. Nat Rev Cancer, 2021, 21(7): 446-460. DOI: 10.1038/s41568-021-00353-1. 
											 												 doi: 10.1038/s41568-021-00353-1 pmid: 33953369  | 
										
| [10] |  
											  Noronha C, Ribeiro AS, Taipa R, et al.  Cadherin expression and EMT: a focus on gliomas[J]. Biomedicines, 2021, 9(10): 1328. DOI: 10.3390/biomedicines9101328. 
											 												 doi: 10.3390/biomedicines9101328  | 
										
| [11] |  
											  Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3): 212-226. DOI: 10.1016/j.tcb.2018.12.001. 
											 												 doi: S0962-8924(18)30201-0 pmid: 30594349  | 
										
| [12] |  
											  Li R, Ruan Q, Zheng J, et al.  LINC01116 promotes doxorubicin resistance in osteosarcoma by epigenetically silencing miR-424-5p and inducing epithelial-mesenchymal transition[J]. Front Pharmacol, 2021, 12: 632206. DOI: 10.3389/fphar.2021.632206. 
											 												 doi: 10.3389/fphar.2021.632206  | 
										
| [13] |  
											  Kun-Peng Z, Chun-Lin Z, Xiao-Long M, et al.  Fibronectin-1 modulated by the long noncoding RNA OIP5-AS1/miR-200b-3p axis contributes to doxorubicin resistance of osteosarcoma cells[J]. J Cell Physiol, 2019, 234(5): 6927-6939. DOI: 10.1002/jcp.27435. 
											 												 doi: 10.1002/jcp.27435 pmid: 30204936  | 
										
| [14] |  
											  Usman RM, Razzaq F, Akbar A, et al.  Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance[J]. Asia Pac J Clin Oncol, 2021, 17(3): 193-208. DOI: 10.1111/ajco.13449. 
											 												 doi: 10.1111/ajco.13449  | 
										
| [15] |  
											  Wang K, Du B, Xu B, et al.  JMJD6-STAT3Y705ph axis promotes autophagy in osteosarcoma cancer cells by regulating ATG[J]. Biofactors, 2020, 46(5): 839-848. DOI: 10.1002/biof.1614. 
											 												 doi: 10.1002/biof.1614  | 
										
| [16] |  
											  Zhu K, Yuan Y, Wen J, et al.  LncRNA Sox2OT-V7 promotes doxorubicin-induced autophagy and chemoresistance in osteosarcoma via tumor-suppressive miR-142/miR-22[J]. Aging (Albany NY), 2020, 12(8): 6644-6666. DOI: 10.18632/aging.103004. 
											 												 doi: 10.18632/aging.103004  | 
										
| [17] |  
											  Zhang J, Rao D, Ma H, et al.  LncRNA SNHG15 contributes to doxorubicin resistance of osteosarcoma cells through targeting the miR-381-3p/GFRA1 axis[J]. Open Life Sci, 2020, 15(1): 871-883. DOI: 10.1515/biol-2020-0086. 
											 												 doi: 10.1515/biol-2020-0086 pmid: 33817274  | 
										
| [18] |  
											  D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-592. DOI: 10.1002/cbin.11137. 
											 												 doi: 10.1002/cbin.11137 pmid: 30958602  | 
										
| [19] |  
											  Zhou B, Li L, Li Y, et al.  Long noncoding RNA SNHG12 mediates doxorubicin resistance of osteosarcoma via miR-320a/MCL1 axis[J]. Biomed Pharmacother, 2018, 106: 850-857. DOI: 10.1016/j.biopha.2018.07.003. 
											 												 doi: S0753-3322(18)32968-8 pmid: 30119255  | 
										
| [20] |  
											  Liu L, Wang S. Long non-coding RNA OIP5-AS1 knockdown enhances CDDP sensitivity in osteosarcoma via miR-377-3p/FosL2 axis[J]. Onco Targets Ther, 2020, 13: 3853-3866. DOI: 10.2147/OTT.S232918. 
											 												 doi: 10.2147/OTT.S232918  | 
										
| [21] |  
											  Hu Y, Yang Q, Wang L, et al.  Knockdown of the oncogene lncRNA NEAT1 restores the availability of miR-34c and improves the sensitivity to cisplatin in osteosarcoma[J]. Biosci Rep, 2018, 38(3): BSR20180375. DOI: 10.1042/BSR20180375. 
											 												 doi: 10.1042/BSR20180375  | 
										
| [22] |  
											  Haider T, Pandey V, Banjare N, et al.  Drug resistance in cancer: mechanisms and tackling strategies[J]. Pharmacol Rep, 2020, 72(5): 1125-1151. DOI: 10.1007/s43440-020-00138-7. 
											 												 doi: 10.1007/s43440-020-00138-7  | 
										
| [23] |  
											  Wang JQ, Yang Y, Cai CY, et al.  Multidrug resistance proteins (MRPs): structure, function and the overcoming of cancer multidrug resistance[J]. Drug Resist Updat, 2021, 54: 100743. DOI: 10.1016/j.drup.2021.100743. 
											 												 doi: 10.1016/j.drup.2021.100743  | 
										
| [24] |  
											  Han Z, Shi L. Long non-coding RNA LUCAT1 modulates methotrexate resistance in osteosarcoma via miR-200c/ABCB1 axis[J]. Biochem Biophys Res Commun, 2018, 495(1): 947-953. DOI: 10.1016/j.bbrc.2017.11.121. 
											 												 doi: 10.1016/j.bbrc.2017.11.121  | 
										
| [25] |  
											  Tang R, Zhang Z, Han W. CircLRRK1 targets miR-223-3p to inhibit the proliferation, migration and invasion of trophoblast cells by regulating the PI3K/Akt signaling pathway[J]. Placenta, 2021, 104: 110-118. DOI: 10.1016/j.placenta.2020.12.003. 
											 												 doi: 10.1016/j.placenta.2020.12.003 pmid: 33310596  | 
										
| [26] |  
											  Wang B, Cao C, Liu X, et al.  BRCA1-associated protein inhibits glioma cell proliferation and migration and glioma stem cell self-renewal via the TGF-β/PI3K/Akt/mTOR signalling pathway[J]. Cell Oncol, 2020, 43(2): 223-235. DOI: 10.1007/s13402-019-00482-8. 
											 												 doi: 10.1007/s13402-019-00482-8  | 
										
| [27] |  
											  Zhou B, Xiang J, Zhan C, et al.  STK33 promotes the growth and progression of human pancreatic neuroendocrine tumour via activation of the PI3K/Akt/mTOR pathway[J]. Neuroendocrinology, 2020, 110(3-4): 307-320. DOI: 10.1159/000501829. 
											 												 doi: 10.1159/000501829 pmid: 31261148  | 
										
| [28] |  
											  Song L, Zhou Z, Gan Y, et al.  Long noncoding RNA OIP5-AS1 causes cisplatin resistance in osteosarcoma through inducing the LPAATβ/PI3K/Akt/mTOR signaling pathway by sponging the miR-340-5p[J]. J Cell Biochem, 2019, 120(6): 9656-9666. DOI: 10.1002/jcb.28244. 
											 												 doi: 10.1002/jcb.28244 pmid: 30548308  | 
										
| [29] |  
											  Sun ZY, Jian YK, Zhu HY, et al.  lncRNAPVT1 targets miR-152 to enhance chemoresistance of osteosarcoma to gemcitabine through activating c-MET/PI3K/Akt pathway[J]. Pathol Res Pract, 2019, 215(3): 555-563. DOI: 10.1016/j.prp.2018.12.013. 
											 												 doi: 10.1016/j.prp.2018.12.013  | 
										
| [30] |  
											  Zhang L, Zhao G, Ji S, et al.  Downregulated long non-coding RNA MSC-AS1 inhibits osteosarcoma progression and increases sensitivity to cisplatin by binding to microRNA-142[J]. Med Sci Monit, 2020, 26: e921594. DOI: 10.12659/MSM.921594. 
											 												 doi: 10.12659/MSM.921594  | 
										
| [31] |  
											  Wang F, Kong L, Pu Y, et al.  Long noncoding RNA DICER1-AS1 functions in methylation regulation on the multi-drugresistance of osteosarcoma cells via miR-34a-5p and GADD45A[J]. Front Oncol, 2021, 11: 685881. DOI: 10.3389/fonc.2021.685881. 
											 												 doi: 10.3389/fonc.2021.685881  | 
										
| [1] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. | 
| [2] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. | 
| [3] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛. 铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. | 
| [4] | 龚艳, 陈洪雷. 微RNA调控卵巢癌顺铂耐药的机制研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 186-190. | 
| [5] | 柳洋, 蒋路路, 管凯文, 周岳阳, 康小红. linc01410在恶性肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2023, 50(9): 540-543. | 
| [6] | 安荣, 刘美华, 王佩晨, 王晓慧. Nrf2在卵巢癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(8): 493-497. | 
| [7] | 全祯豪, 徐飞鹏, 黄哲, 黄先进, 陈日红, 孙开裕, 胡旭, 林琳. 沉默lncRNA FTX通过miR-22-3p/NLRP3炎症体通路抑制胃癌细胞增殖[J]. 国际肿瘤学杂志, 2023, 50(4): 202-207. | 
| [8] | 拜莹, 李琦, 李亚芹, 赵卫红. E2F1与lncRNA在恶性肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2023, 50(3): 164-168. | 
| [9] | 刘小洁, 黄俊星. NADPH氧化酶2在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(10): 618-621. | 
| [10] | 闫学敏, 武霄勇, 张佳谊, 文锦旭, 王跃欣. SPRY4-IT1与乳腺癌[J]. 国际肿瘤学杂志, 2023, 50(10): 627-630. | 
| [11] | 王熙, 吴川清. 结直肠癌多药耐药逆转的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 42-46. | 
| [12] | 周仁邦, 张仲传, 许志远, 朱勋兵. miR-219a-5p通过负调控HMGA2抑制骨肉瘤U2OS细胞增殖、侵袭和迁移[J]. 国际肿瘤学杂志, 2022, 49(4): 193-198. | 
| [13] | 洪安澜, 曹蒙, 王焱, 方方. 长非编码RNA作为竞争性内源RNA在黑色素瘤中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(1): 61-64. | 
| [14] | 张静, 黄守国, 夏鹰. CeRNA网络介导恶性肿瘤表型调控的机制研究[J]. 国际肿瘤学杂志, 2021, 48(9): 544-548. | 
| [15] | 陈佩瑶, 贾军梅. 缺氧影响免疫治疗耐药的机制与应用[J]. 国际肿瘤学杂志, 2021, 48(8): 489-493. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||