国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (1): 55-59.doi: 10.3760/cma.j.cn371439-20220520-00011
收稿日期:
2022-05-20
修回日期:
2022-09-12
出版日期:
2023-01-08
发布日期:
2023-03-16
通讯作者:
段衍超
E-mail:duanyanchao2000@163.com
基金资助:
Zhao Jianhao1,2, Duan Yanchao1()
Received:
2022-05-20
Revised:
2022-09-12
Online:
2023-01-08
Published:
2023-03-16
Contact:
Duan Yanchao
E-mail:duanyanchao2000@163.com
Supported by:
摘要:
多发性骨髓瘤(MM)病灶多局限于骨髓内,初诊或诊治过程中可出现远离骨髓或临近软组织的恶性浆细胞浸润即多发性骨髓瘤髓外病变(MM-EMD)。MM-EMD具有高度侵袭性,其临床行为不同于骨髓限制性骨髓瘤,该类患者预后差。但其发病机制尚未阐明,目前研究认为,MM细胞归巢受阻、侵袭力增强、细胞外基质降解及血管生成能力增强等过程可能参与MM-EMD发生。肿瘤遗传学异常和骨髓微环境改变等在上述发病过程中发挥重要作用。
赵建昊, 段衍超. 多发性骨髓瘤髓外病变发病机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 55-59.
Zhao Jianhao, Duan Yanchao. Research progress in the pathogenesis of extramedullary disease in multiple myeloma[J]. Journal of International Oncology, 2023, 50(1): 55-59.
[1] |
庄俊玲. 多发性骨髓瘤髓外病变诊治进展[J]. 临床血液学杂志, 2019, 32(7): 499-503. DOI: 10.13201/j.issn.1004-2806.2019.07.003.
doi: 10.13201/j.issn.1004-2806.2019.07.003 |
[2] |
Moser-Katz T, Joseph NS, Dhodapkar MV, et al. Game of bones: how myeloma manipulates its microenvironment[J]. Front Oncol, 2021, 10: 625199. DOI: 10.3389/fonc.2020.625199.
doi: 10.3389/fonc.2020.625199 |
[3] |
Klimienė I, Radzevičius M, Matuzevičienė R, et al. Adhesion mo-lecule immunophenotype of bone marrow multiple myeloma plasma cells impacts the presence of malignant circulating plasma cells in peripheral blood[J]. Int J Lab Hematol, 2021, 43(3): 403-408. DOI: 10.1111/ijlh.13387.
doi: 10.1111/ijlh.13387 pmid: 33185981 |
[4] |
Katz BZ. Adhesion molecules—the lifelines of multiple myeloma cells[J]. Semin Cancer Biol, 2010, 20(3): 186-195. DOI: 10.1016/j.semcancer.2010.04.003.
doi: 10.1016/j.semcancer.2010.04.003 |
[5] |
Hathi D, Chanswangphuwana C, Cho N, et al. Ablation of VLA4 in multiple myeloma cells redirects tumor spread and prolongs survival[J]. Sci Rep, 2022, 12(1): 30. DOI: 10.1038/s41598-021-03748-0.
doi: 10.1038/s41598-021-03748-0 pmid: 34996933 |
[6] |
Li J, Pan Q, Rowan PD, et al. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells[J]. Oncotarget, 2016, 7(10): 11299-11309. DOI: 10.18632/oncotarget.7170.
doi: 10.18632/oncotarget.7170 pmid: 26849235 |
[7] |
Jung O, Trapp-Stamborski V, Purushothaman A, et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins[J]. Oncogenesis, 2016, 5(2): e202. DOI: 10.1038/oncsis.2016.5.
doi: 10.1038/oncsis.2016.5 |
[8] |
Akhmetzyanova I, McCarron MJ, Parekh S, et al. Dynamic CD138 surface expression regulates switch between myeloma growth and dissemination[J]. Leukemia, 2020, 34(1): 245-256. DOI: 10.1038/s41375-019-0519-4.
doi: 10.1038/s41375-019-0519-4 pmid: 31439945 |
[9] |
Harshman SW, Canella A, Ciarlariello PD, et al. Proteomic characterization of circulating extracellular vesicles identifies novel serum myeloma associated markers[J]. J Proteomics, 2016, 136: 89-98. DOI: 10.1016/j.jprot.2015.12.016.
doi: 10.1016/j.jprot.2015.12.016 pmid: 26775013 |
[10] |
Janjetovic S, Lohneis P, Nogai A, et al. Clinical and biological characteristics of medullary and extramedullary plasma cell dyscrasias[J]. Biology (Basel), 2021, 10(7): 629. DOI: 10.3390/biology 10070629.
doi: 10.3390/biology 10070629 |
[11] |
Pan Y, Wang H, Tao Q, et al. Absence of both CD56 and CD117 expression on malignant plasma cells is related with a poor prognosis in patients with newly diagnosed multiple myeloma[J]. Leuk Res, 2016, 40: 77-82. DOI: 10.1016/j.leukres.2015.11.003.
doi: 10.1016/j.leukres.2015.11.003 |
[12] |
Geng S, Wang J, Zhang X, et al. Single-cell RNA sequencing reveals chemokine self-feeding of myeloma cells promotes extramedullary metastasis[J]. FEBS Lett, 2020, 594(3): 452-465. DOI: 10.1002/1873-3468.13623.
doi: 10.1002/1873-3468.13623 pmid: 31561267 |
[13] |
Vandyke K, Zeissig MN, Hewett DR, et al. HIF-2α promotes dissemination of plasma cells in multiple myeloma by regulating CXCL12/CXCR4 and CCR1[J]. Cancer Res, 2017, 77(20): 5452-5463. DOI: 10.1158/0008-5472.CAN-17-0115.
doi: 10.1158/0008-5472.CAN-17-0115 pmid: 28855206 |
[14] |
Zeissig MN, Hewett DR, Panagopoulos V, et al. Expression of the chemokine receptor CCR1 promotes the dissemination of multiple myeloma plasma cells in vivo[J]. Haematologica, 2021, 106(12): 3176-3187. DOI: 10.3324/haematol.2020.253526.
doi: 10.3324/haematol.2020.253526 |
[15] |
Peng Y, Li F, Zhang P, et al. IGF-1 promotes multiple myeloma progression through PI3K/Akt-mediated epithelial-mesenchymal transition[J]. Life Sci, 2020, 249: 117503. DOI: 10.1016/j.lfs.2020.117503.
doi: 10.1016/j.lfs.2020.117503 |
[16] |
Akhmetzyanova I, Aaron T, Galbo P, et al. Tissue-resident macrophages promote early dissemination of multiple myeloma via IL-6 and TNFα[J]. Blood Adv, 2021, 5(18): 3592-3608. DOI: 10.1182/bloodadvances.2021005327.
doi: 10.1182/bloodadvances.2021005327 pmid: 34550328 |
[17] |
Xu J, Yu N, Zhao P, et al. Intratumor heterogeneity of MIF expression correlates with extramedullary involvement of multiple myeloma[J]. Front Oncol, 2021, 11: 694331. DOI: 10.3389/fonc.2021.694331.
doi: 10.3389/fonc.2021.694331 |
[18] |
Yang Q, Shen X, Su Z, et al. Emerging roles of noncoding RNAs in multiple myeloma: a review[J]. J Cell Physiol, 2019, 234(6): 7957-7969. DOI: 10.1002/jcp.27547.
doi: 10.1002/jcp.27547 pmid: 30370557 |
[19] |
Chen H, Zhao Y, Zhang J, et al. Promoting effects of miR-135b on human multiple myeloma cells via regulation of the Wnt/ β-catenin/Versican signaling pathway[J]. Cytokine, 2021, 142: 155495. DOI: 10.1016/j.cyto.2021.155495.
doi: 10.1016/j.cyto.2021.155495 |
[20] |
Sewastianik T, Straubhaar JR, Zhao JJ, et al. MiR-15a/16-1 deletion in activated B cells promotes plasma cell and mature B-cell neoplasms[J]. Blood, 2021, 137(14): 1905-1919. DOI: 10.1182/blood.2020009088.
doi: 10.1182/blood.2020009088 |
[21] |
Xu A, Zhang J, Zuo L, et al. FTO promotes multiple myeloma progression by posttranscriptional activation of HSF1 in an m6A-YTHDF2-dependent manner[J]. Mol Ther, 2022, 30(3): 1104-1118. DOI: 10.1016/j.ymthe.2021.12.012.
doi: 10.1016/j.ymthe.2021.12.012 |
[22] |
Pang M, Li C, Zheng D, et al. S1PR2 knockdown promotes migration and invasion in multiple myeloma cells via NF-κB activation[J]. Cancer Manag Res, 2020, 12: 7857-7865. DOI: 10.2147/CMAR.S237330.
doi: 10.2147/CMAR.S237330 pmid: 32922084 |
[23] |
孙睿婕, 单宁宁. 复发难治性多发性骨髓瘤的免疫靶向治疗及存在的问题[J]. 国际肿瘤学杂志, 2021, 48(6): 381-384. DOI: 10.3760/cma.j.cn371439-20200622-00074.
doi: 10.3760/cma.j.cn371439-20200622-00074 |
[24] |
Mina R, D'Agostino M, Cerrato C, et al. Plasma cell leukemia: update on biology and therapy[J]. Leuk Lymphoma, 2017, 58(7): 1538-1547. DOI: 10.1080/10428194.2016.1250263.
doi: 10.1080/10428194.2016.1250263 |
[25] |
Besse L, Sedlarikova L, Greslikova H, et al. Cytogenetics in multiple myeloma patients progressing into extramedullary disease[J]. Eur J Haematol, 2016, 97(1): 93-100. DOI: 10.1111/ejh.12688.
doi: 10.1111/ejh.12688 pmid: 26432667 |
[26] |
Cheong CM, Mrozik KM, Hewett DR, et al. Twist-1 is upregulated by NSD2 and contributes to tumour dissemination and an epithelial-mesenchymal transition-like gene expression signature in t(4;14)-positive multiple myeloma[J]. Cancer Lett, 2020, 475: 99-108. DOI: 10.1016/j.canlet.2020.01.040.
doi: S0304-3835(20)30054-9 pmid: 32014459 |
[27] |
Zeissig MN, Zannettino ACW, Vandyke K. Tumour dissemination in multiple myeloma disease progression and relapse: a potential therapeutic target in high-risk myeloma[J]. Cancers (Basel), 2020, 12(12): 3643. DOI: 10.3390/cancers12123643.
doi: 10.3390/cancers12123643 |
[28] |
Kriegova E, Fillerova R, Minarik J, et al. Whole-genome optical mapping of bone-marrow myeloma cells reveals association of extramedullary multiple myeloma with chromosome 1 abnormalities[J]. Sci Rep, 2021, 11(1): 14671. DOI: 10.1038/s41598-021-93835-z.
doi: 10.1038/s41598-021-93835-z pmid: 34282158 |
[29] |
Farre L, Sanz G, Ruiz-Xivillé N, et al. Extramedullary multiple myeloma patient-derived orthotopic xenograft with a highly altered genome: combined molecular and therapeutic studies[J]. Dis Model Mech, 2021, 14(7): dmm048223. DOI: 10.1242/dmm.048223.
doi: 10.1242/dmm.048223 |
[30] |
Yue Z, Zhou Y, Zhao P, et al. p53 deletion promotes myeloma cells invasion by upregulating miR19a/CXCR5[J]. Leuk Res, 2017, 60: 115-122. DOI: 10.1016/j.leukres.2017.07.003.
doi: 10.1016/j.leukres.2017.07.003 |
[31] |
Liu Y, Jelloul F, Zhang Y, et al. Genetic basis of extramedullary plasmablastic transformation of multiple myeloma[J]. Am J Surg Pathol, 2020, 44(6): 838-848. DOI: 10.1097/PAS.0000000000001459.
doi: 10.1097/PAS.0000000000001459 pmid: 32118627 |
[32] |
Wen Z, Rajagopalan A, Flietner ED, et al. Expression of NrasQ61R and MYC transgene in germinal center B cells induces a highly malignant multiple myeloma in mice[J]. Blood, 2021, 137(1): 61-74. DOI: 10.1182/blood.2020007156.
doi: 10.1182/blood.2020007156 |
[33] |
Cui YS, Song YP, Fang BJ. The role of long non-coding RNAs in multiple myeloma[J]. Eur J Haematol, 2019, 103(1): 3-9. DOI: 10.1111/ejh.13237.
doi: 10.1111/ejh.13237 |
[34] |
Xu K, Hu X, Sun L, et al. MicroRNA-532 exerts oncogenic functions in t(4;14) multiple myeloma by targeting CAMK2N1[J]. Hum Cell, 2019, 32(4): 529-539. DOI: 10.1007/s13577-019-00276-y.
doi: 10.1007/s13577-019-00276-y pmid: 31452083 |
[35] |
Berenstein R, Nogai A, Waechter M, et al. Multiple myeloma cells modify VEGF/IL-6 levels and osteogenic potential of bone marrow stromal cells via Notch/miR-223[J]. Mol Carcinog, 2016, 55(12): 1927-1939. DOI: 10.1002/mc.22440.
doi: 10.1002/mc.22440 |
[36] |
Handa H, Kuroda Y, Kimura K, et al. Long non-coding RNA MALAT1 is an inducible stress response gene associated with extramedullary spread and poor prognosis of multiple myeloma[J]. Br J Haematol, 2017, 179(3): 449-460. DOI: 10.1111/bjh.14882.
doi: 10.1111/bjh.14882 |
[37] |
Liu N, Feng S, Li H, et al. Long non-coding RNA MALAT1 facilitates the tumorigenesis, invasion and glycolysis of multiple myeloma via miR-1271-5p/SOX13 axis[J]. J Cancer Res Clin Oncol, 2020, 146(2): 367-379. DOI: 10.1007/s00432-020-03127-8.
doi: 10.1007/s00432-020-03127-8 pmid: 31953613 |
[1] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 任露, 谢晓丽, 张坤, 王丽娟. 双氢青蒿素联合卡非佐米对多发性骨髓瘤细胞活性、增殖、凋亡的影响及机制研究[J]. 国际肿瘤学杂志, 2024, 51(3): 129-136. |
[3] | 李书月, 马辰莺, 周菊英, 徐晓婷, 秦颂兵. 寡转移非小细胞肺癌的放疗进展[J]. 国际肿瘤学杂志, 2024, 51(3): 170-174. |
[4] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹. 结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[5] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英. 免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
[6] | 杨丽蓉, 王羽丰. 预测浆液性卵巢癌术后复发远处转移风险机器学习模型的构建[J]. 国际肿瘤学杂志, 2023, 50(4): 220-226. |
[7] | 李雄安, 颜艳艳. 丙戊酸镁用于治疗继发癫痫的晚期肺癌脑转移患者1例报道[J]. 国际肿瘤学杂志, 2023, 50(3): 191-192. |
[8] | 马培晗, 张灵敏, 路宁, 张明鑫. 麻醉对肝细胞癌复发转移的影响[J]. 国际肿瘤学杂志, 2023, 50(2): 117-121. |
[9] | 张雨潇, 张连生, 李莉娟. 新型免疫检查点TIGIT在多发性骨髓瘤免疫治疗中的研究现状与应用前景[J]. 国际肿瘤学杂志, 2023, 50(2): 122-125. |
[10] | 吕璐, 孙鹏飞, 崔腾璐. 子宫内膜癌颈部淋巴结转移综合治疗1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(11): 701-704. |
[11] | 张露, 周菊英, 马辰莺, 林州. 复发转移性宫颈癌免疫治疗相关进展[J]. 国际肿瘤学杂志, 2022, 49(9): 517-520. |
[12] | 彭琛, 谢印通, 张昕, 谢鹏. 宫颈癌维持治疗研究进展[J]. 国际肿瘤学杂志, 2022, 49(7): 430-435. |
[13] | 高珊, 陆敏秋, 石磊, 褚彬, 房立娟, 项秋晴, 王宇彤, 丁月华, 鲍立. 伊沙佐米联合方案治疗复发/难治多发性骨髓瘤的疗效和安全性分析[J]. 国际肿瘤学杂志, 2022, 49(5): 286-291. |
[14] | 张绍鹏, 孔远, 潘国强, 朱丽, 王大广. 全身化疗联合腹腔热灌注治疗胃癌1例[J]. 国际肿瘤学杂志, 2022, 49(5): 316-318. |
[15] | 王斌, 周江云, 刘曦. 不同放疗方案治疗晚期食管鳞状细胞癌的临床价值评析[J]. 国际肿瘤学杂志, 2021, 48(8): 484-488. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||