国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (2): 117-121.doi: 10.3760/cma.j.cn371439-20221027-00024
收稿日期:
2022-10-27
修回日期:
2022-11-27
出版日期:
2023-02-08
发布日期:
2023-03-22
通讯作者:
张明鑫,Email:基金资助:
Ma Peihan1, Zhang Lingming2, Lu Ning3, Zhang Mingxin1,3()
Received:
2022-10-27
Revised:
2022-11-27
Online:
2023-02-08
Published:
2023-03-22
Contact:
Zhang Mingxin,Email:Supported by:
摘要:
肝细胞癌(HCC)是导致癌症死亡的主要原因之一,术后有较高的复发转移风险,麻醉方式、麻醉相关用药、术中麻醉管理等可影响HCC的生物学行为或机体免疫,进而影响HCC的复发转移。关注麻醉对HCC复发转移的影响,优化麻醉方案,有望改善患者的长期生存。
马培晗, 张灵敏, 路宁, 张明鑫. 麻醉对肝细胞癌复发转移的影响[J]. 国际肿瘤学杂志, 2023, 50(2): 117-121.
Ma Peihan, Zhang Lingming, Lu Ning, Zhang Mingxin. Effect of anesthesia on the recurrence and metastasis of hepatocellular carcinoma[J]. Journal of International Oncology, 2023, 50(2): 117-121.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
斯迪克江·依布拉音, 刘洪亮, 吴晓龙, 等. 影响肝癌切除术预后的多因素分析[J]. 国际肿瘤学杂志, 2015, 42(3): 172-176. DOI: 10.3760/cma.j.issn.1673-422X.2015.03.004.
doi: 10.3760/cma.j.issn.1673-422X.2015.03.004 |
[3] |
Tabrizian P, Jibara G, Shrager B, et al. Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis[J]. Ann Surg, 2015, 261(5): 947-955. DOI: 10.1097/SLA.000000000 0000710.
doi: 10.1097/SLA.0000000000000710 pmid: 25010665 |
[4] |
Plücker J, Wirsik NM, Ritter AS, et al. Anaesthesia as an influence in tumour progression[J]. Langenbecks Arch Surg, 2021, 406(5): 1283-1294. DOI: 10.1007/s00423-021-02078-z.
doi: 10.1007/s00423-021-02078-z |
[5] |
Rossaint J, Zarbock A. Anesthesia-induced immune modulation[J]. Curr Opin Anaesthesiol, 2019, 32(6): 799-805. DOI: 10.1097/ACO.0000000000000790.
doi: 10.1097/ACO.0000000000000790 pmid: 31464697 |
[6] |
Boavista Barros Heil L, Leme Silva P, Ferreira Cruz F, et al. Im-munomodulatory effects of anesthetic agents in perioperative medicine[J]. Minerva Anestesiol, 2020, 86(2): 181-195. DOI: 10.23736/S0375-9393.19.13627-9.
doi: 10.23736/S0375-9393.19.13627-9 pmid: 31680494 |
[7] |
Zhang Y, Jing Y, Pan R, et al. Mechanisms of cancer inhibition by local anesthetics[J]. Front Pharmacol, 2021, 12: 770694. DOI: 10.3389/fphar.2021.770694.
doi: 10.3389/fphar.2021.770694 |
[8] |
Zhang H, Guo K, Sun X, et al. Impact of anesthesia methods on perioperative systemic inflammation and long-term outcomes in patients undergoing surgery for hepatocellular carcinoma: a propensity score-matched analysis[J]. Ann Transl Med, 2021, 9(1): 49. DOI: 10.21037/atm-20-3704.
doi: 10.21037/atm-20-3704 pmid: 33553342 |
[9] |
Wang X, Xie W, Gan S, et al. Effects of general anesthesia versus local anesthesia in primary hepatocellular carcinoma patients presenting for thermal ablation surgery: a multiple center retrospec-tive cohort study with propensity score matching[J]. Ann Transl Med, 2020, 8(6): 277. DOI: 10.21037/atm.2020.03.88.
doi: 10.21037/atm.2020.03.88 |
[10] |
Gao X, Mi Y, Guo N, et al. The mechanism of propofol in cancer development: an updated review[J]. Asia Pac J Clin Oncol, 2020, 16(2): e3-e11. DOI: 10.1111/ajco.13301.
doi: 10.1111/ajco.13301 |
[11] |
Li J, Liu M, Zeng B, et al. Propofol induces hepatocellular car-cinoma cell apoptosis via regulating miR-105/JAK2/STAT3 axis[J]. Cytokine, 2021, 148: 155649. DOI: 10.1016/j.cyto.2021.155649.
doi: 10.1016/j.cyto.2021.155649 |
[12] |
Liu Y, Wang X, Li H, et al. Propofol ameliorates the proliferation and epithelial-mesenchymal transition of hepatoma carcinoma cells via non-coding RNA activated by DNA damage (NORAD)/microRNA (miR)-556-3p/migration and invasion enhancer 1 (MIEN1) axis[J]. J Environ Pathol Toxicol Oncol, 2021, 40(4): 87-97. DOI: 10.1615/JEnvironPatholToxicolOncol.2021039471.
doi: 10.1615/JEnvironPatholToxicolOncol.2021039471 |
[13] |
Liu Y, Zhang N, Cao Q, et al. The effects of propofol on the growth behavior of hepatoma xenografts in Balb/c mice[J]. Biomed Pharmacother, 2017, 90: 47-52. DOI: 10.1016/j.biopha.2017.03. 041.
doi: S0753-3322(17)30296-2 pmid: 28342365 |
[14] |
Wang Y, Xu B, Zhou J, et al. Propofol activates AMPK to inhibit the growth of HepG2 cells in vitro and hepatocarcinogenesis in xenograft mouse tumor models by inducing autophagy[J]. J Gastrointest Oncol, 2020, 11(6): 1322-1332. DOI: 10.21037/jgo-20-472.
doi: 10.21037/jgo-20-472 |
[15] |
Ou W, Lv J, Zou X, et al. Propofol inhibits hepatocellular carci-noma growth and invasion through the HMGA2-mediated Wnt/β-catenin pathway[J]. Exp Ther Med, 2017, 13(5): 2501-2506. DOI: 10.3892/etm.2017.4253.
doi: 10.3892/etm.2017.4253 |
[16] |
Liu SQ, Zhang JL, Li ZW, et al. Propofol inhibits proliferation, migration, invasion and promotes apoptosis through down-regulating miR-374a in hepatocarcinoma cell lines[J]. Cell Physiol Biochem, 2018, 49(6): 2099-2110. DOI: 10.1159/000493814.
doi: 10.1159/000493814 |
[17] |
Gong T, Ning X, Deng Z, et al. Propofol-induced miR-219-5p inhibits growth and invasion of hepatocellular carcinoma through suppression of GPC3-mediated Wnt/β-catenin signalling activation[J]. J Cell Biochem, 2019, 120(10): 16934-16945. DOI: 10.1002/jcb.28952.
doi: 10.1002/jcb.28952 pmid: 31104336 |
[18] |
Fei G, Cao M, Ge C, et al. Propofol suppresses hepatocellular carcinoma by inhibiting NET1 through downregulating ERK/VEGF signaling pathway[J]. Sci Rep, 2020, 10(1): 11208. DOI: 10.1038/s41598-020-67693-0.
doi: 10.1038/s41598-020-67693-0 pmid: 32641699 |
[19] |
Song F, Liu J, Feng Y, et al. Propofol-induced HOXA11-AS pro-motes proliferation, migration and invasion, but inhibits apoptosis in hepatocellular carcinoma cells by targeting miR-4458[J]. Int J Mol Med, 2020, 46(3): 1135-1145. DOI: 10.3892/ijmm.2020.4667.
doi: 10.3892/ijmm.2020.4667 |
[20] |
Sun Y, Sun H. Propofol exerts anticancer activity on hepatocellular carcinoma cells by raising lncRNA DGCR5[J]. J Cell Physiol, 2020, 235(3): 2963-2972. DOI: 10.1002/jcp.29202.
doi: 10.1002/jcp.29202 pmid: 31538334 |
[21] |
Zheng H, Fu Y, Yang T. Propofol inhibits proliferation, migration, and invasion of hepatocellular carcinoma cells by downregulating Twist[J]. J Cell Biochem, 2019, 120(8): 12803-12809. DOI: 10.1002/jcb.28551.
doi: 10.1002/jcb.28551 pmid: 30861184 |
[22] |
Wang D, Xing N, Yang T, et al. Exosomal lncRNA H19 promotes the progression of hepatocellular carcinoma treated with propofol via miR-520a-3p/LIMK1 axis[J]. Cancer Med, 2020, 9(19): 7218-7230. DOI: 10.1002/cam4.3313.
doi: 10.1002/cam4.3313 |
[23] |
Lai HC, Lee MS, Lin C, et al. Propofol-based total intravenous anaesthesia is associated with better survival than desflurane anaesthesia in hepatectomy for hepatocellular carcinoma: a retrospective cohort study[J]. Br J Anaesth, 2019, 123(2): 151-160. DOI: 10.1016/j.bja.2019.04.057.
doi: 10.1016/j.bja.2019.04.057 |
[24] |
Koo BW, Lim DJ, Oh AY, et al. Retrospective comparison between the effects of propofol and inhalation anesthetics on postoperative recurrence of early- and intermediate-stage hepatocellular carcinoma[J]. Med Princ Pract, 2020, 29(5): 422-428. DOI: 10.1159/000506637.
doi: 10.1159/000506637 |
[25] |
黄凫卿, 倪强, 陈武荣. 丙泊酚与地氟醚麻醉对肝癌肝部分切除术后患者肝功能和远期预后影响的对比研究[J]. 海军医学杂志, 2020, 41(5): 600-602. DOI: 10.3969/j.issn.1009-0754.2020.05.035.
doi: 10.3969/j.issn.1009-0754.2020.05.035 |
[26] |
Nishiwada T, Kawaraguchi Y, Uemura K, et al. Effect of sevoflu-rane on human hepatocellular carcinoma HepG2 cells under conditions of high glucose and insulin[J]. J Anesth, 2015, 29(5): 805-808. DOI: 10.1007/s00540-015-2025-9.
doi: 10.1007/s00540-015-2025-9 pmid: 25980989 |
[27] |
Song G, Tian L, Cheng Y, et al. Antitumor activity of sevoflurane in HCC cell line is mediated by miR-29a-induced suppression of Dnmt3a[J]. J Cell Biochem, 2019, 120(10): 18152-18161. DOI: 10.1002/jcb.29121.
doi: 10.1002/jcb.29121 pmid: 31190353 |
[28] |
Cao Y, Lv W, Ding W, et al. Sevoflurane inhibits the proliferation and invasion of hepatocellular carcinoma cells through regulating the PTEN/Akt/GSK-3β/β-catenin signaling pathway by downregula-ting miR-25-3p[J]. Int J Mol Med, 2020, 46(1): 97-106. DOI: 10.3892/ijmm.2020.4577.
doi: 10.3892/ijmm.2020.4577 |
[29] |
Chen DT, Pan JH, Chen YH, et al. The mu-opioid receptor is a molecular marker for poor prognosis in hepatocellular carcinoma and represents a potential therapeutic target[J]. Br J Anaesth, 2019, 122(6): e157-e167. DOI: 10.1016/j.bja.2018.09.030.
doi: 10.1016/j.bja.2018.09.030 pmid: 30915986 |
[30] |
Tang B, Li Y, Yuan S, et al. Upregulation of the δ opioid receptor in liver cancer promotes liver cancer progression both in vitro and in vivo[J]. Int J Oncol, 2013, 43(4): 1281-1290. DOI: 10.3892/ijo.2013.2046.
doi: 10.3892/ijo.2013.2046 pmid: 23903826 |
[31] |
Akkız H, Bayram S, Bekar A, et al. Functional polymorphisms of cyclooxygenase-2 gene and risk for hepatocellular carcinoma[J]. Mol Cell Biochem, 2011, 347(1/2): 201-208. DOI: 10.1007/s11010-010-0629-9.
doi: 10.1007/s11010-010-0629-9 |
[32] |
Wang RD, Zhu JY, Zhu Y, et al. Perioperative analgesia with parecoxib sodium improves postoperative pain and immune function in patients undergoing hepatectomy for hepatocellular carcinoma[J]. J Eval Clin Pract, 2020, 26(3): 992-1000. DOI: 10.1111/jep.13256.
doi: 10.1111/jep.13256 |
[33] |
Yeh CC, Lin JT, Jeng LB, et al. Nonsteroidal anti-inflammatory drugs are associated with reduced risk of early hepatocellular carcinoma recurrence after curative liver resection: a nationwide cohort study[J]. Ann Surg, 2015, 261(3): 521-526. DOI: 10.1097/SLA.0000000000000746.
doi: 10.1097/SLA.0000000000000746 |
[34] |
Takami Y, Eguchi S, Tateishi M, et al. A randomised controlled trial of meloxicam, a Cox-2 inhibitor, to prevent hepatocellular carcinoma recurrence after initial curative treatment[J]. Hepatol Int, 2016, 10(5): 799-806. DOI: 10.1007/s12072-016-9704-y.
doi: 10.1007/s12072-016-9704-y pmid: 26846471 |
[35] |
Chen P, Luo X, Dai G, et al. Dexmedetomidine promotes the pro-gression of hepatocellular carcinoma through hepatic stellate cell activation[J]. Exp Mol Med, 2020, 52(7): 1062-1074. DOI: 10.1038/s12276-020-0461-6.
doi: 10.1038/s12276-020-0461-6 |
[36] |
Zhou L, Li J, Liu X, et al. Dexmedetomidine promotes apoptosis and suppresses proliferation of hepatocellular carcinoma cells via microRNA-130a/EGR1 axis[J]. Cell Death Discov, 2022, 8(1): 31. DOI: 10.1038/s41420-021-00805-5.
doi: 10.1038/s41420-021-00805-5 pmid: 35046398 |
[37] |
Huang L, Qin C, Wang L, et al. Effects of dexmedetomidine on immune response in patients undergoing radical and reconstructive surgery for oral cancer[J]. Oncol Lett, 2021, 21(2): 106. DOI: 10.3892/ol.2020.12367.
doi: 10.3892/ol.2020.12367 pmid: 33376539 |
[38] |
Wang K, Li C. Effects of dexmedetomidine on inflammatory factors, T lymphocyte subsets and expression of NF-κB in peripheral blood mononuclear cells in patients receiving radical surgery of colon carcinoma[J]. Oncol Lett, 2018, 15(5): 7153-7157. DOI: 10.3892/ol.2018.8205.
doi: 10.3892/ol.2018.8205 pmid: 29725437 |
[39] |
Tai YH, Wu HL, Mandell MS, et al. The association of allogeneic blood transfusion and the recurrence of hepatic cancer after surgical resection[J]. Anaesthesia, 2020, 75(4): 464-471. DOI: 10.1111/anae.14862.
doi: 10.1111/anae.14862 pmid: 31573678 |
[40] |
Chen GX, Qi CY, Hu WJ, et al. Perioperative blood transfusion has distinct postsurgical oncologic impact on patients with different stage of hepatocellular carcinoma[J]. BMC Cancer, 2020, 20(1): 487. DOI: 10.1186/s12885-020-06980-5.
doi: 10.1186/s12885-020-06980-5 |
[41] |
Xun Y, Tian H, Hu L, et al. The impact of perioperative allogeneic blood transfusion on prognosis of hepatocellular carcinoma after radical hepatectomy: a systematic review and meta-analysis of cohort studies[J]. Medicine (Baltimore), 2018, 97(43): e12911. DOI: 10.1097/MD.0000000000012911.
doi: 10.1097/MD.0000000000012911 |
[42] |
Aguilar-Nascimento JE, Zampieri-Filho JP, Bordin JO. Implications of perioperative allogeneic red blood cell transfusion on the immune-inflammatory response[J]. Hematol Transfus Cell Ther, 2021, 43(1): 58-64. DOI: 10.1016/j.htct.2020.03.003.
doi: 10.1016/j.htct.2020.03.003 pmid: 32532624 |
[43] |
Rodieck W, Hallensleben M, Robert J, et al. Impact of periopera-tive blood transfusions on postoperative renal function and survival after resection of colorectal liver metastases[J]. World J Surg Oncol, 2022, 20(1): 100. DOI: 10.1186/s12957-022-02559-5.
doi: 10.1186/s12957-022-02559-5 pmid: 35354485 |
[44] |
Nakaseko Y, Haruki K, Shiba H, et al. Impact of fresh frozen plasma transfusion on postoperative inflammation and prognosis of colorectal liver metastases[J]. J Surg Res, 2018, 226: 157-165. DOI: 10.1016/j.jss.2017.09.030.
doi: S0022-4804(17)30628-5 pmid: 29661282 |
[45] |
Yang T, Lu JH, Lau WY, et al. Perioperative blood transfusion does not influence recurrence-free and overall survivals after curative resection for hepatocellular carcinoma: a propensity score matching analysis[J]. J Hepatol, 2016, 64(3): 583-593. DOI: 10.1016/j.jhep.2015.10.012.
doi: 10.1016/j.jhep.2015.10.012 pmid: 26596543 |
[46] |
Tian YL, Ji JJ, Chen LN, et al. Risk factors for long-term prognosis of hepatocellular carcinoma patients after anatomic hepatectomy[J]. World J Clin Cases, 2020, 8(4): 713-722. DOI: 10.12998/wjcc.v8.i4.713.
doi: 10.12998/wjcc.v8.i4.713 |
[47] |
Liu Z, Wang Y, Dou C, et al. Hypoxia-induced up-regulation of VASP promotes invasiveness and metastasis of hepatocellular carcinoma[J]. Theranostics, 2018, 8(17): 4649-4663. DOI: 10.7150/thno.26789.
doi: 10.7150/thno.26789 pmid: 30279729 |
[48] |
Yi J, Lei Y, Xu S, et al. Intraoperative hypothermia and its clinical outcomes in patients undergoing general anesthesia: national study in China[J]. PLoS One, 2017, 12(6): e0177221. DOI: 10.1371/journal.pone.0177221.
doi: 10.1371/journal.pone.0177221 |
[49] |
Yu H, Luo Y, Peng H, et al. The predicting value of postoperative body temperature on long-term survival in patients with rectal cancer[J]. Tumour Biol, 2015, 36(10): 8055-8063. DOI: 10.1007/s13277-015-3535-7.
doi: 10.1007/s13277-015-3535-7 |
[50] |
Zhang B, Wang Y, Zhao Z, et al. Temperature plays an essential regulatory role in the tumor immune microenvironment[J]. J Biomed Nanotechnol, 2021, 17(2): 169-195. DOI: 10.1166/jbn.2021.3030.
doi: 10.1166/jbn.2021.3030 pmid: 33785090 |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[3] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[4] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[5] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[6] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[7] | 顾芳萌, 徐晨阳, 雷大鹏. 人工智能辅助电子喉镜检查在喉癌及喉癌前病变诊治中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 303-307. |
[8] | 张文馨, 夏泠, 彭晋, 周福祥. 甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[9] | 王昆, 周中新, 臧其威. 血清TGF-β1、VEGF水平对非小细胞肺癌患者单孔胸腔镜根治术后复发的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 198-203. |
[10] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇. 信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[11] | 姚益新, 沈煜霖. 血清SOCS3、TXNIP水平对肝细胞癌TACE治疗预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 217-222. |
[12] | 胡婷婷, 王越华. 电子鼻与线虫鼻——新型早期癌症筛查工具[J]. 国际肿瘤学杂志, 2024, 51(4): 223-226. |
[13] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[14] | 严爱婷, 王翠竹, 刘春桂, 鲁小敏. 卡瑞利珠单抗与信迪利单抗治疗晚期非小细胞肺癌的临床疗效及安全性分析[J]. 国际肿瘤学杂志, 2024, 51(3): 137-142. |
[15] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||