[1] |
Mendis S, To YH, Tie J. Biomarkers in locally advanced rectal cancer: a review[J]. Clin Colorectal Cancer, 2022, 21(1): 36-44. DOI: 10.1016/j.clcc.2021.11.002.
doi: 10.1016/j.clcc.2021.11.002
|
[2] |
Marin S, Pérez-Cordón L, Salvà F, et al. Cost-minimisation analysis of rectal cancer neoadjuvant chemoradiotherapy based on fluoropyrimidines (capecitabine versus 5-fluorouracil)[J]. Eur J Hosp Pharm, 2021, 28(Suppl 2): e13-e17. DOI: 10.1136/ejhpharm-2019-002156.
doi: 10.1136/ejhpharm-2019-002156
|
[3] |
Shinto E, Omata J, Sikina A, et al. Predictive immunohistochemical features for tumour response to chemoradiotherapy in rectal cancer[J]. BJS Open, 2020, 4(2): 301-309. DOI: 10.1002/bjs5.50251.
doi: 10.1002/bjs5.50251
pmid: 32026629
|
[4] |
刘英强, 陈淅涓, 韩广森, 等. 中低位局部进展期直肠癌新辅助同步放化疗敏感性与环氧化酶-2表达的关系[J]. 中华实验外科杂志, 2018, 35(8): 1548-1550. DOI: 10.3760/cma.j.issn.1001-9030.2018.08.049.
doi: 10.3760/cma.j.issn.1001-9030.2018.08.049
|
[5] |
Berbecka M, Forma A, Baj J, et al. A systematic review of the cyclooxygenase-2 (COX-2) expression in rectal cancer patients treated with preoperative radiotherapy or radiochemotherapy[J]. J Clin Med, 2021, 10(19): 4443. DOI: 10.3390/jcm10194443.
doi: 10.3390/jcm10194443
|
[6] |
Fumagalli A, Oost KC, Kester L, et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer[J]. Cell Stem Cell, 2020, 26(4): 569-578. e7. DOI: 10.1016/j.stem.2020.02.008.
doi: S1934-5909(20)30061-8
pmid: 32169167
|
[7] |
刘英强, 陈淅涓, 韩广森, 等. 中低位局部进展期直肠癌新辅助同步放化疗前后G蛋白耦联受体蛋白的表达变化及其临床意义[J]. 中华实验外科杂志, 2019, 36(6): 1110-1113. DOI: 10.3760/cma.j.issn.1001-9030.2019.06.040.
doi: 10.3760/cma.j.issn.1001-9030.2019.06.040
|
[8] |
Morsy H, Gaballah A, Samir M, et al. LGR5, HES1 and ATOH1 in young rectal cancer patients in Egyptian[J]. Asian Pac J Cancer Prev, 2021, 22(9): 2819-2830. DOI: 10.31557/APJCP.2021.22.9.2819.
doi: 10.31557/APJCP.2021.22.9.2819
|
[9] |
Mirza-Aghazadeh-Attari M, Mohammadzadeh A, Yousefi B, et al. 53BP1: a key player of DNA damage response with critical functions in cancer[J]. DNA Repair (Amst), 2019, 73: 110-119. DOI: 10.1016/j.dnarep.2018.11.008.
doi: 10.1016/j.dnarep.2018.11.008
|
[10] |
Tang M, Feng X, Pei G, et al. FOXK1 participates in DNA damage response by controlling 53BP1 function[J]. Cell Rep, 2020, 32(6): 108018. DOI: 10.1016/j.celrep.2020.108018.
doi: 10.1016/j.celrep.2020.108018
|
[11] |
王燕, 张洛, 潘在用. P53蛋白表达与直肠癌术前同步放化疗敏感性研究[J]. 中华普通外科学文献(电子版), 2021, 15(2): 111-115. DOI: 10.3877/cma.j.issn.1674-0793.2021.02.007.
doi: 10.3877/cma.j.issn.1674-0793.2021.02.007
|
[12] |
Huang A, Xiao Y, Peng C, et al. 53BP1 expression and immunoscore are associated with the efficacy of neoadjuvant chemoradiotherapy for rectal cancer[J]. Strahlenther Onkol, 2020, 196(5): 465-473. DOI: 10.1007/s00066-019-01559-x.
doi: 10.1007/s00066-019-01559-x
pmid: 31828392
|
[13] |
Tian G, Li G, Guan L, et al. Pretreatment albumin-to-alkaline phosphatase ratio as a prognostic indicator in solid cancers: a meta-analysis with trial sequential analysis[J]. Int J Surg, 2020, 81: 66-73. DOI: 10.1016/j.ijsu.2020.07.024.
doi: S1743-9191(20)30559-8
pmid: 32745716
|
[14] |
Li B, Deng H, Zhou Z, et al. The prognostic value of the fibrinogen to pre-albumin ratio in malignant tumors of the digestive system: a systematic review and meta-analysis[J]. Cancer Cell Int, 2022, 22(1): 22. DOI: 10.1186/s12935-022-02445-w.
doi: 10.1186/s12935-022-02445-w
pmid: 35033080
|
[15] |
Lu S, Liu Z, Zhou X, et al. Preoperative fibrinogen-albumin ratio index (FARI) is a reliable prognosis and chemoradiotherapy sensitivity predictor in locally advanced rectal cancer patients under-going radical surgery following neoadjuvant chemoradiotherapy[J]. Cancer Manag Res, 2020, 12: 8555-8568. DOI: 10.2147/CMAR.S273065.
doi: 10.2147/CMAR.S273065
|
[16] |
Li H, Wang H, Shao S, et al. Pretreatment albumin-to-fibrinogen ratio independently predicts chemotherapy response and prognosis in patients with locally advanced rectal cancer undergoing total mesorectal excision after neoadjuvant chemoradiotherapy[J]. Onco Targets Ther, 2020, 13: 13121-13130. DOI: 10.2147/OTT.S288265.
doi: 10.2147/OTT.S288265
|
[17] |
Wang Y, Gao C, Zhou K, et al. MicroRNA-532-5p-programmed cell death protein 4 (PDCD4) axis regulates angiotensin Ⅱ-induced human umbilical vein endothelial cell apoptosis and proliferation[J]. Microvasc Res, 2021, 138: 104195. DOI: 10.1016/j.mvr.2021.104195.
doi: 10.1016/j.mvr.2021.104195
|
[18] |
Lai CY, Yeh KY, Liu BF, et al. MicroRNA-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-α signaling pathways in zebrafish[J]. Cancers (Basel), 2021, 13(21): 5565. DOI: 10.3390/cancers13215565.
doi: 10.3390/cancers13215565
|
[19] |
Dou X, Wang RB, Meng XJ, et al. PDCD4 as a predictor of sensitivity to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients[J]. Asian Pac J Cancer Prev, 2014, 15(2): 825-830. DOI: 10.7314/apjcp.2014.15.2.825.
doi: 10.7314/apjcp.2014.15.2.825
|
[20] |
Akiyoshi T, Gotoh O, Tanaka N, et al. T-cell complexity and density are associated with sensitivity to neoadjuvant chemoradiotherapy in patients with rectal cancer[J]. Cancer Immunol Immunother, 2021, 70(2): 509-518. DOI: 10.1007/s00262-020-02705-6.
doi: 10.1007/s00262-020-02705-6
|
[21] |
Chen TW, Huang KC, Chiang SF, et al. Prognostic relevance of programmed cell death-ligand 1 expression and CD8+ TILs in rectal cancer patients before and after neoadjuvant chemoradiotherapy[J]. J Cancer Res Clin Oncol, 2019, 145(4): 1043-1053. DOI: 10.1007/s00432-019-02874-7.
doi: 10.1007/s00432-019-02874-7
|
[22] |
Rapoport BL, Anderson R. Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy[J]. Int J Mol Sci, 2019, 20(4): 959. DOI: 10.3390/ijms20040959.
doi: 10.3390/ijms20040959
|
[23] |
Hack SP, Zhu AX, Wang Y. Augmenting anticancer immunity through combined targeting of angiogenic and PD-1/PD-L1 pathways: challenges and opportunities[J]. Front Immunol, 2020, 11: 598877. DOI: 10.3389/fimmu.2020.598877.
doi: 10.3389/fimmu.2020.598877
|
[24] |
Huang CY, Chiang SF, Ke TW, et al. Clinical significance of programmed death 1 ligand-1 (CD274/PD-L1) and intra-tumoral CD8+ T-cell infiltration in stage Ⅱ- Ⅲ colorectal cancer[J]. Sci Rep, 2018, 8(1): 15658. DOI: 10.1038/s41598-018-33927-5.
doi: 10.1038/s41598-018-33927-5
|
[25] |
Cui Y, Lyu X, Ding L, et al. Global miRNA dosage control of embryonic germ layer specification[J]. Nature, 2021, 593(7860): 602-606. DOI: 10.1038/s41586-021-03524-0.
doi: 10.1038/s41586-021-03524-0
|
[26] |
Ghafouri-Fard S, Esmaeili M, Taheri M. Expression of non-coding RNAs in hematological malignancies[J]. Eur J Pharmacol, 2020, 875: 172976. DOI: 10.1016/j.ejphar.2020.172976.
doi: 10.1016/j.ejphar.2020.172976
|
[27] |
Campayo M, Navarro A, Benítez JC, et al. miR-21, miR-99b and miR-375 combination as predictive response signature for preoperative chemoradiotherapy in rectal cancer[J]. PLoS One, 2018, 13(11): e0206542. DOI: 10.1371/journal.pone.0206542.
doi: 10.1371/journal.pone.0206542
|
[28] |
Machackova T, Trachtova K, Prochazka V, et al. Tumor microRNAs identified by small RNA sequencing as potential response predictors in locally advanced rectal cancer patients treated with neoadjuvant chemoradiotherapy[J]. Cancer Genomics Proteomics, 2020, 17(3): 249-257. DOI: 10.21873/cgp.20185.
doi: 10.21873/cgp.20185
|
[29] |
Kaneko K, Kawai K, Kazama S, et al. Clinical significance of mucinous components in rectal cancer after preoperative chemoradiotherapy[J]. Surg Today, 2017, 47(6): 697-704. DOI: 10.1007/s00595-016-1419-0.
doi: 10.1007/s00595-016-1419-0
pmid: 27659290
|
[30] |
Yao Y, Xu X, Yang L, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer[J]. Cell Stem Cell, 2020, 26(1): 17-26. e6. DOI: 10.1016/j.stem.2019.10.010.
doi: S1934-5909(19)30431-X
pmid: 31761724
|