国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (6): 345-348.doi: 10.3760/cma.j.cn371439-20220323-00065
收稿日期:
2022-03-23
出版日期:
2022-06-08
发布日期:
2022-06-30
通讯作者:
呼群
E-mail:huqun2015@126.
Wang Yue1, Hu Qun2(), Hou Yingwei1
Received:
2022-03-23
Online:
2022-06-08
Published:
2022-06-30
Contact:
Hu Qun
E-mail:huqun2015@126.
摘要:
肿瘤细胞表达程序性死亡蛋白配体-1(PD-L1)是引起免疫逃逸的主要机制,也是免疫检查点抑制剂治疗疗效的预测因素。PD-L1表达受多种机制调控,其中DNA甲基化、组蛋白修饰、非编码RNA等表观遗传修饰可通过调控PD-L1的表达促进肿瘤发生发展和产生耐药。明确其调控机制可为肿瘤临床免疫治疗带来新的思路。
王悦, 呼群, 侯英伟. 表观遗传修饰对肿瘤PD-L1表达调控的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 345-348.
Wang Yue, Hu Qun, Hou Yingwei. Research progress in influences of epigenetic modifications on PD-L1 expression in tumors[J]. Journal of International Oncology, 2022, 49(6): 345-348.
[1] |
Zhang H, Dai Z, Wu W, et al. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 184. DOI: 10.1186/s13046-021-01987-7.
doi: 10.1186/s13046-021-01987-7 |
[2] |
Skourti E, Dhillon P. Cancer epigenetics: promises and pitfalls for cancer therapy[J]. FEBS J, 2022, 289(5): 1156-1159. DOI: 10.1111/febs.16395.
doi: 10.1111/febs.16395 pmid: 35233949 |
[3] |
Ao C, Gao L, Yu L. Research progress in predicting DNA methylation modifications and the relation with human diseases[J]. Curr Med Chem, 2022, 29(5): 822-836. DOI: 10.2174/0929867328666210917115733.
doi: 10.2174/0929867328666210917115733 |
[4] |
Micevic G, Thakral D, McGeary M, et al. PD-L1 methylation regulates PD-L1 expression and is associated with melanoma survival[J]. Pigment Cell Melanoma Res, 2019, 32(3): 435-440. DOI: 10.1111/pcmr.12745.
doi: 10.1111/pcmr.12745 |
[5] |
Xu J, Wei L, Liu H, et al. CD274 (PD-L1) methylation is an independent predictor for bladder cancer patients' survival[J]. Cancer Invest, 2022, 40(3): 228-233. DOI: 10.1080/07357907.2022.2028805.
doi: 10.1080/07357907.2022.2028805 |
[6] |
Palicelli A, Croci S, Bisagni A, et al. What do we have to know about PD-L1 expression in prostate cancer? A systematic literature review. part 5: epigenetic regulation of PD-L1[J]. Int J Mol Sci, 2021, 22(22): 12314. DOI: 10.3390/ijms222212314.
doi: 10.3390/ijms222212314 |
[7] |
Asgarova A, Asgarov K, Godet Y, et al. PD-L1 expression is regulated by both DNA methylation and NF-kB during EMT signaling in non-small cell lung carcinoma[J]. Oncoimmunology, 2018, 7(5): e1423170. DOI: 10.1080/2162402X.2017.1423170.
doi: 10.1080/2162402X.2017.1423170 |
[8] |
Huang KC, Chiang SF, Chen WT, et al. Decitabine augments chemotherapy-induced PD-L1 upregulation for PD-L1 blockade in colorectal cancer[J]. Cancers (Basel), 2020, 12(2): 462. DOI: 10.3390/cancers12020462.
doi: 10.3390/cancers12020462 |
[9] |
Li X, Wang Z, Huang J, et al. Specific Zinc finger-induced methylation of PD-L1 promoter inhibits its expression[J]. FEBS Open Bio, 2019, 9(6): 1063-1070. DOI: 10.1002/2211-5463.12568.
doi: 10.1002/2211-5463.12568 |
[10] |
Xu YP, Lv L, Liu Y, et al. Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy[J]. J Clin Invest, 2019, 129(10): 4316-4331. DOI: 10.1172/JCI129317.
doi: 10.1172/JCI129317 |
[11] |
Shen Y, Liu L, Wang M, et al. TET2 inhibits PD-L1 gene expression in breast cancer cells through histone deacetylation[J]. Cancers (Basel), 2021, 13(9): 2207. DOI: 10.3390/cancers13092207.
doi: 10.3390/cancers13092207 |
[12] |
Lin Y, Qiu T, Wei G, et al. Role of histone post-translational modifications in inflammatory diseases[J]. Front Immunol, 2022, 13: 852272. DOI: 10.3389/fimmu.2022.852272.
doi: 10.3389/fimmu.2022.852272 |
[13] |
Ruzic D, Djoković N, Srdić-Rajić T, et al. Targeting histone deacetylases: opportunities for cancer treatment and chemoprevention[J]. Pharmaceutics, 2022, 14(1): 209. DOI: 10.3390/pharmaceutics14010209.
doi: 10.3390/pharmaceutics14010209 |
[14] |
Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment[J]. J Hematol Oncol, 2020, 13(1): 104. DOI: 10.1186/s13045-020-00937-8.
doi: 10.1186/s13045-020-00937-8 |
[15] |
Zhao Y, Wang XX, Wu W, et al. EZH2 regulates PD-L1 expre-ssion via HIF-1α in non-small cell lung cancer cells[J]. Biochem Biophys Res Commun, 2019, 517(2): 201-209. DOI: 10.1016/j.bbrc.2019.07.039.
doi: 10.1016/j.bbrc.2019.07.039 |
[16] |
Xiao G, Jin LL, Liu CQ, et al. EZH2 negatively regulates PD-L1 expression in hepatocellular carcinoma[J]. J Immunother Cancer, 2019, 7(1): 300. DOI: 10.1186/s40425-019-0784-9.
doi: 10.1186/s40425-019-0784-9 |
[17] |
Xiong W, Deng H, Huang C, et al. MLL3 enhances the trans-cription of PD-L1 and regulates anti-tumor immunity[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(2): 454-463. DOI: 10.1016/j.bbadis.2018.10.027.
doi: 10.1016/j.bbadis.2018.10.027 |
[18] |
Xu S, Wang X, Yang Y, et al. LSD1 silencing contributes to enhanced efficacy of anti-CD47/PD-L1 immunotherapy in cervical cancer[J]. Cell Death Dis, 2021, 12(4): 282. DOI: 10.1038/s41419-021-03556-4.
doi: 10.1038/s41419-021-03556-4 |
[19] |
Shen DD, Pang JR, Bi YP, et al. LSD1 deletion decreases exosomal PD-L1 and restores T-cell response in gastric cancer[J]. Mol Cancer, 2022, 21(1): 75. DOI: 10.1186/s12943-022-01557-1.
doi: 10.1186/s12943-022-01557-1 |
[20] |
Rajan PK, Udoh UA, Sanabria JD, et al. The role of histone acetylation-/methylation-mediated apoptotic gene regulation in hepatocellular carcinoma[J]. Int J Mol Sci, 2020, 21(23): 8894. DOI: 10.3390/ijms21238894.
doi: 10.3390/ijms21238894 |
[21] |
King J, Patel M, Chandrasekaran S. Metabolism, HDACs, and HDAC inhibitors: a systems biology perspective[J]. Metabolites, 2021, 11(11): 792. DOI: 10.3390/metabo11110792.
doi: 10.3390/metabo11110792 |
[22] |
Bondarev AD, Attwood MM, Jonsson J, et al. Recent developments of HDAC inhibitors: emerging indications and novel mole-cules[J]. Br J Clin Pharmacol, 2021, 87(12): 4577-4597. DOI: 10.1111/bcp.14889.
doi: 10.1111/bcp.14889 pmid: 33971031 |
[23] |
Yang Z, Zhang L, Liu J, et al. PD-L1 combined with HDAC9 is a useful prognostic predictor in hepatocellular carcinoma[J]. Transl Cancer Res, 2021, 10(5): 2305-2317. DOI: 10.21037/tcr-20-3415.
doi: 10.21037/tcr-20-3415 |
[24] |
Li X, Su X, Liu R, et al. HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression[J]. Oncogene, 2021, 40(10): 1836-1850. DOI: 10.1038/s41388-020-01636-x.
doi: 10.1038/s41388-020-01636-x |
[25] |
Wang N, Wu R, Tang D, et al. The BET family in immunity and disease[J]. Signal Transduct Target Ther, 2021, 6(1): 23. DOI: 10.1038/s41392-020-00384-4.
doi: 10.1038/s41392-020-00384-4 |
[26] |
Andrieu GP, Shafran JS, Smith CL, et al. BET protein targeting suppresses the PD-1/PD-L1 pathway in triple-negative breast cancer and elicits anti-tumor immune response[J]. Cancer Lett, 2019, 465: 45-58. DOI: 10.1016/j.canlet.2019.08.013.
doi: 10.1016/j.canlet.2019.08.013 |
[27] |
Liu K, Zhou Z, Gao H, et al. JQ1, a BET-bromodomain inhibitor, inhibits human cancer growth and suppresses PD-L1 expression[J]. Cell Biol Int, 2019, 43(6): 642-650. DOI: 10.1002/cbin.11139.
doi: 10.1002/cbin.11139 |
[28] |
Jing X, Shao S, Zhang Y, et al. BRD4 inhibition suppresses PD-L1 expression in triple-negative breast cancer[J]. Exp Cell Res, 2020, 392(2): 112034. DOI: 10.1016/j.yexcr.2020.112034.
doi: 10.1016/j.yexcr.2020.112034 |
[29] |
Ali Syeda Z, Langden SSS, Munkhzul C, et al. Regulatory me-chanism of microRNA expression in cancer[J]. Int J Mol Sci, 2020, 21(5): 1723. DOI: 10.3390/ijms21051723.
doi: 10.3390/ijms21051723 |
[30] |
Feng S, Sun H, Zhu W. MiR-92 overexpression suppresses immune cell function in ovarian cancer via LATS2/YAP1/PD-L1 pathway[J]. Clin Transl Oncol, 2021, 23(3): 450-458. DOI: 10.1007/s12094-020-02439-y.
doi: 10.1007/s12094-020-02439-y |
[31] |
Roshani Asl E, Rasmi Y, Baradaran B. MicroRNA-124-3p suppresses PD-L1 expression and inhibits tumorigenesis of colorectal cancer cells via modulating STAT3 signaling[J]. J Cell Physiol, 2021, 236(10): 7071-7087. DOI: 10.1002/jcp.30378.
doi: 10.1002/jcp.30378 pmid: 33821473 |
[32] |
Rasoolnezhad M, Safaralizadeh R, Hosseinpourfeizi MA, et al. miRNA-138-5p: a strong tumor suppressor targeting PD-L1 inhibits proliferation and motility of breast cancer cells and induces apoptosis[J]. Eur J Pharmacol, 2021, 896: 173933. DOI: 10.1016/j.ejphar.2021.173933.
doi: 10.1016/j.ejphar.2021.173933 |
[33] |
Miliotis C, Slack FJ. miR-105-5p regulates PD-L1 expression and tumor immunogenicity in gastric cancer[J]. Cancer Lett, 2021, 518: 115-126. DOI: 10.1016/j.canlet.2021.05.037.
doi: 10.1016/j.canlet.2021.05.037 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||