国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (11): 688-692.doi: 10.3760/cma.j.cn371439-20210906-00136
收稿日期:
2021-09-06
修回日期:
2021-09-30
出版日期:
2021-11-08
发布日期:
2021-12-14
通讯作者:
严雪冰
E-mail:yyxxbb8904@163.com
基金资助:
Liu Peipei, Yang Mengxue, Yan Xuebing()
Received:
2021-09-06
Revised:
2021-09-30
Online:
2021-11-08
Published:
2021-12-14
Contact:
Yan Xuebing
E-mail:yyxxbb8904@163.com
Supported by:
摘要:
N6-甲基腺嘌呤(m6A)甲基化修饰即RNA腺嘌呤第6位氮原子的甲基化,这一动态过程由编码器、消码器、读码器共同调控。越来越多研究表明m6A甲基化修饰影响消化系统肿瘤发生发展的多个环节如增殖、侵袭、转移、耐药等。对m6A甲基化修饰在消化系统肿瘤中所扮演角色的深入了解将有助于新型精准诊疗策略的建立进而改善患者的总体预后。
刘培培, 杨梦雪, 严雪冰. m6A甲基化修饰在消化系统肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2021, 48(11): 688-692.
Liu Peipei, Yang Mengxue, Yan Xuebing. Research advances of m6A methylation modification in digestive system neoplasms[J]. Journal of International Oncology, 2021, 48(11): 688-692.
[1] |
Darwiche N. Epigenetic mechanisms and the hallmarks of cancer: an intimate affair[J]. Am J Cancer Res, 2020, 10(7):1954-1978.
pmid: 32774995 |
[2] |
Chen M, Wong CM. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis[J]. Mol Cancer, 2020, 19(1):44. DOI: 10.1186/s12943-020-01172-y.
doi: 10.1186/s12943-020-01172-y |
[3] |
Wang Q, Chen C, Ding Q, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020, 69(7):1193-1205. DOI: 10.1136/gutjnl-2019-319639.
doi: 10.1136/gutjnl-2019-319639 |
[4] |
Tian J, Zhu Y, Rao M, et al. N6-methyladenosine mRNA methy-lation of PIK3CB regulates AKT signalling to promote PTEN-deficient pancreatic cancer progression[J]. Gut, 2020, 69(12):2180-2192. DOI: 10.1136/gutjnl-2019-320179.
doi: 10.1136/gutjnl-2019-320179 |
[5] |
Song P, Feng L, Li J, et al. β-catenin represses miR455-3p to stimulate m6A modification of HSF1 mRNA and promote its translation in colorectal cancer[J]. Mol Cancer, 2020, 19(1):129. DOI: 10.1186/s12943-020-01244-z.
doi: 10.1186/s12943-020-01244-z |
[6] |
Wang T, Kong S, Tao M, et al. The potential role of RNA N6-methyladenosine in cancer progression[J]. Mol Cancer, 2020, 19(1):88. DOI: 10.1186/s12943-020-01204-7.
doi: 10.1186/s12943-020-01204-7 |
[7] |
Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481):117-120. DOI: 10.1038/nature12730.
doi: 10.1038/nature12730 |
[8] |
Zhu ZM, Huo FC, Pei DS. Function and evolution of RNA N6-methyladenosine modification[J]. Int J Biol Sci, 2020, 16(11):1929-1940. DOI: 10.7150/ijbs.45231.
doi: 10.7150/ijbs.45231 |
[9] | Ji P, Wang X, Xie N, et al. N6-methyladenosine in RNA and DNA: an epitranscriptomic and epigenetic player implicated in determination of stem cell fate[J]. Stem Cells Int, 2018, 2018:3256524. DOI: 10.1155/2018/3256524. |
[10] |
Lu J, Qian J, Yin S, et al. Mechanisms of RNA N6-methyladenosine in hepatocellular carcinoma: from the perspectives of etiology[J]. Front Oncol, 2020, 10:1105. DOI: 10.3389/fonc.2020.01105.
doi: 10.3389/fonc.2020.01105 |
[11] |
Imam H, Khan M, Gokhale NS, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle[J]. Proc Natl Acad Sci U S A, 2018, 115(35):8829-8834. DOI: 10.1073/pnas.1808319115.
doi: 10.1073/pnas.1808319115 |
[12] |
Fang Q, Chen H. The significance of m6A RNA methylation regulators in predicting the prognosis and clinical course of HBV-related hepatocellular carcinoma[J]. Mol Med, 2020, 26(1):60. DOI: 10.1186/s10020-020-00185-z.
doi: 10.1186/s10020-020-00185-z |
[13] | Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepato-logy, 2018, 67(6):2254-2270. DOI: 10.1002/hep.29683. |
[14] |
Zhang C, Huang S, Zhuang H, et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation[J]. Oncogene, 2020, 39(23):4507-4518. DOI: 10.1038/s41388-020-1303-7.
doi: 10.1038/s41388-020-1303-7 |
[15] |
Cheng X, Li M, Rao X, et al. KIAA1429 regulates the migration and invasion of hepatocellular carcinoma by altering m6A modification of ID2 mRNA[J]. Onco Targets Ther, 2019, 12:3421-3428. DOI: 10.2147/ott.s180954.
doi: 10.2147/OTT |
[16] |
Chen Y, Peng C, Chen J, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1[J]. Mol Cancer, 2019, 18(1):127. DOI: 10.1186/s12943-019-1053-8.
doi: 10.1186/s12943-019-1053-8 |
[17] | Zuo X, Chen Z, Gao W, et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma[J]. Hematol Oncol, 2020, 13(1):5. DOI: 10.1186/s13045-019-0839-x. |
[18] |
Zhao M, Jia M, Xiang Y, et al. METTL3 promotes the progression of hepatocellular carcinoma through m6A-mediated up-regulation of microRNA-873-5p[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 319(5):G636. DOI: 10.1152/ajpgi.00161.2020.
doi: 10.1152/ajpgi.00161.2020 |
[19] |
Lin Y, Wei X, Jian Z, et al. METTL3 expression is associated with glycolysis metabolism and sensitivity to glycolytic stress in hepatocellular carcinoma[J]. Cancer Med, 2020, 9(8):2859-2867. DOI: 10.1002/cam4.2918.
doi: 10.1002/cam4.v9.8 |
[20] |
Zhou Y, Yin Z, Hou B, et al. Expression profiles and prognostic significance of RNA N6-methyladenosine-related genes in patients with hepatocellular carcinoma: evidence from independent datasets[J]. Cancer Manag Res, 2019, 11:3921-3931. DOI: 10.2147/CMAR.S191565.
doi: 10.2147/CMAR.S191565 pmid: 31118805 |
[21] | Wu X, Zhang X, Tao L, et al. Prognostic value of an m6A RNA methylation regulator-based signature in patients with hepatocellular carcinoma[J]. Biomed Res Int, 2020, 2020: 2053902. DOI: 10.1155/2020/2053902. |
[22] |
Zhang J, Bai R, Li M, et al. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression[J]. Nat Commun, 2019, 10(1):1858. DOI: 10.1038/s41467-019-09712-x.
doi: 10.1038/s41467-019-09712-x |
[23] |
Wang M, Liu J, Zhao Y, et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer[J]. Mol Cancer, 2020, 19(1):130. DOI: 10.1186/s12943-020-01249-8.
doi: 10.1186/s12943-020-01249-8 pmid: 32843065 |
[24] |
Guo X, Li K, Jiang W, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner[J]. Mol Cancer, 2020, 19(1):91. DOI: 10.1186/s12943-020-01158-w.
doi: 10.1186/s12943-020-01158-w |
[25] |
Hou J, Wang Z, Li H, et al. Gene signature and identification of clinical trait-related m6A regulators in pancreatic cancer[J]. Front Genet, 2020, 11:522. DOI: 10.3389/fgene.2020.00522.
doi: 10.3389/fgene.2020.00522 |
[26] |
Geng Y, Guan R, Hong W, et al. Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival[J]. Ann Transl Med, 2020, 8(6):387. DOI: 10.21037/atm.2020.03.98.
doi: 10.21037/atm.2020.03.98 pmid: 32355831 |
[27] | Taketo K, Konno M, Asai A, et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells[J]. Int J Oncol, 2018, 52(2):621-629. DOI: 10.3892/ijo.2017.4219. |
[28] | Wang Q, Geng W, Guo H, et al. Emerging role of RNA methyltransferase METTL3 in gastrointestinal cancer[J]. Hematol Oncol, 2020, 13(1):57. DOI: 10.1186/s13045-020-00895-1. |
[29] |
Yang DD, Chen ZH, Yu K, et al. METTL3 promotes the progression of gastric cancer via targeting the MYC pathway[J]. Front Oncol, 2020, 10:115. DOI: 10.3389/fonc.2020.00115.
doi: 10.3389/fonc.2020.00115 |
[30] |
Yan J, Huang X, Zhang X, et al. LncRNA LINC00470 promotes the degradation of PTEN mRNA to facilitate malignant behavior in gastric cancer cells[J]. Biochem Biophys Res Commun, 2020, 521(4):887-893. DOI: 10.1016/j.bbrc.2019.11.016.
doi: 10.1016/j.bbrc.2019.11.016 |
[31] |
Yue B, Song C, Yang L, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer[J]. Mol Cancer, 2019, 18(1):142. DOI: 10.1186/s12943-019-1065-4.
doi: 10.1186/s12943-019-1065-4 |
[32] |
Xie JW, Huang XB, Chen QY, et al. m6A modification-mediated BATF2 acts as a tumor suppressor in gastric cancer through inhibition of ERK signaling[J]. Mol Cancer, 2020, 19(1):114. DOI: 10.1186/s12943-020-01223-4.
doi: 10.1186/s12943-020-01223-4 |
[33] | Pi J, Wang W, Ji M, et al. YTHDF1 promotes gastric carcinogenesis by controlling translation of FZD7[J]. Cancer Res, 2020, 11: canres.0066.2020. DOI: 10.1158/0008-5472.can-20-0066. DOI: 10.1158/0008-5472.can-20-0066. |
[34] |
Li Y, Zheng D, Wang F, et al. Expression of demethylase genes, FTO and ALKBH1, is associated with prognosis of gastric cancer[J]. Dig Dis Sci, 2019, 64(6):1503-1513. DOI: 10.1007/s10620-018-5452-2.
doi: 10.1007/s10620-018-5452-2 |
[35] |
Shen C, Xuan B, Yan T, et al. m6A-dependent glycolysis enhances colorectal cancer progression[J]. Mol Cancer, 2020, 19(1):72. DOI: 10.1186/s12943-020-01190-w.
doi: 10.1186/s12943-020-01190-w |
[36] |
Xiang S, Liang X, Yin S, et al. N6-methyladenosine methyltransferase METTL3 promotes colorectal cancer cell proliferation through enhancing MYC expression[J]. Am J Transl Res, 2020, 12(5):1789-1806.
pmid: 32509177 |
[37] | Peng W, Li J, Chen R, et al. Upregulated METTL3 promotes metastasis of colorectal cancer via miR-1246/SPRED2/MAPK signaling pathway[J]. Exp Clin Cancer Res, 2019, 38(1):393. DOI: 10.1186/s13046-019-1408-4. |
[38] |
Uddin MB, Roy KR, Hosain SB, et al. An N6-methyladenosine at the transited codon 273 of p53 pre-mRNA promotes the expression of R273H mutant protein and drug resistance of cancer cells[J]. Biochem Pharmacol, 2019, 160:134-145. DOI: 10.1016/j.bcp.2018.12.014.
doi: 10.1016/j.bcp.2018.12.014 |
[39] |
Li T, Hu P S, Zuo Z, et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma[J]. Mol Cancer, 2019, 18(1):112. DOI: 10.1186/s12943-019-1038-7.
doi: 10.1186/s12943-019-1038-7 |
[40] |
Yang X, Zhang S, He C, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST[J]. Mol Cancer, 2020, 19(1):46. DOI: 10.1186/s12943-020-1146-4.
doi: 10.1186/s12943-020-1146-4 |
[41] |
Ji L, Chen S, Gu L, et al. Exploration of potential roles of m6A regulators in colorectal cancer prognosis[J]. Front Oncol, 2020, 10:768. DOI: 10.3389/fonc.2020.00768.
doi: 10.3389/fonc.2020.00768 |
[42] | Meng Y, Li S, Gu D, et al. Genetic variants in m6A modification genes are associated with colorectal cancer risk[J]. Carcinogenesis, 2020, 41(1):8-17. DOI: 10.1093/carcin/bgz165. |
[1] | 胡茹, 李东霖, 严雪冰. 甲基转移酶样蛋白14与肿瘤[J]. 国际肿瘤学杂志, 2022, 49(8): 478-483. |
[2] | 徐凯, 文刚, 李瑞, 田园. 淋巴细胞与C反应蛋白比值对消化系统肿瘤预后价值的研究进展[J]. 国际肿瘤学杂志, 2022, 49(10): 627-629. |
[3] | 居欣月, 胡春梅, 赵月, 唐艳. CDX2与胃肠道肿瘤[J]. 国际肿瘤学杂志, 2021, 48(6): 374-376. |
[4] | 吴汉生, 黄树杰, 庄伟涛, 丁宇, 高枕, 乔贵宾. m6A甲基化修饰与肺癌[J]. 国际肿瘤学杂志, 2021, 48(4): 225-230. |
[5] | 邓波儿, 孔为民. 子宫内膜癌的表观遗传学研究进展[J]. 国际肿瘤学杂志, 2021, 48(3): 184-188. |
[6] | 曾娟, 杨向红. N6-甲基腺嘌呤修饰调节因子与肿瘤[J]. 国际肿瘤学杂志, 2021, 48(2): 96-100. |
[7] | 何苗, 范奎, 曹芳. 表观遗传与肺癌耐药[J]. 国际肿瘤学杂志, 2021, 48(10): 622-626. |
[8] | 桑莹冰, 梁俊琴. 皮肤鳞状细胞癌表观遗传学发病机制[J]. 国际肿瘤学杂志, 2020, 47(9): 569-572. |
[9] | 王坤龙, 张洋, 宿伟鹏, 刘攀, 赵化荣. LSD1和PDPN在舌鳞状细胞癌中的表达及对预后的影响[J]. 国际肿瘤学杂志, 2020, 47(5): 264-271. |
[10] | 马英骥, 孙丽斌, 邱文生. 长非编码RNA GHET1在消化系统肿瘤中的作用机制[J]. 国际肿瘤学杂志, 2020, 47(5): 304-307. |
[11] | 朱泽民, 谢智钦, 孙永康, 唐才喜. 微小RNA-223与消化系统肿瘤[J]. 国际肿瘤学杂志, 2020, 47(2): 112-114. |
[12] | 尹剑云, 王培伟, 顾建伟. m 6A甲基化与乳腺癌[J]. 国际肿瘤学杂志, 2020, 47(12): 752-755. |
[13] | 张千慧, 张洋, 宿伟鹏, 张宋安, 刘攀, 赵化荣. LSD1、MGMT和Ki-67在高级别胶质瘤中的表达及对预后的影响[J]. 国际肿瘤学杂志, 2019, 46(9): 519-525. |
[14] | 李龙龙,胡孔旺. 赖氨酸去甲基化酶6与肿瘤[J]. 国际肿瘤学杂志, 2019, 46(5): 289-294. |
[15] | 齐瑞丽, 王华庆. 血管靶向药物联合PD-1/PD-L1抗体在消化系统肿瘤治疗中的研究进展[J]. 国际肿瘤学杂志, 2019, 46(12): 750-754. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||