[1] |
Venables ZC, Nijsten T, Wong KF, et al. Epidemiology of basal and cutaneous squamous cell carcinoma in the U.K.2013-15: a cohort study[J]. Br J Dermatol, 2019,181(3):474-482. DOI: 10.1111/bjd.17873.
doi: 10.1111/bjd.17873
pmid: 30864158
|
[2] |
Stang A, Khil L, Kajüter H, et al. Incidence and mortality for cutaneous squamous cell carcinoma: comparison across three continents[J]. J Eur Acad Dermatol Venereol, 2019,33 Suppl 8: 6-10. DOI: 10.1111/jdv.15967.
doi: 10.1111/jdv.15318
pmid: 30811690
|
[3] |
Umezono Y, Sato Y, Noto M, et al. Incidence rate of cutaneous squamous cell carcinoma is rapidly increasing in Akita Prefecture: urgent alert for super-aged society[J]. J Dermatol, 2019,46(3):259-262. DOI: 10.1111/1346-8138.14759.
doi: 10.1111/1346-8138.14759
pmid: 30614560
|
[4] |
Hillen U, Leiter U, Haase S, et al. Advanced cutaneous squamous cell carcinoma: a retrospective analysis of patient profiles and treatment patterns—results of a non-interventional study of the DeCOG[J]. Eur J Cancer, 2018,96:34-43. DOI: 10.1016/j.ejca.2018.01.075.
doi: 10.1016/j.ejca.2018.01.075
pmid: 29665511
|
[5] |
Ando M, Saito Y, Xu G, et al. Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers[J]. Nat Commun, 2019,10(1):2415. DOI: 10.1038/s41467-019-09937-w.
doi: 10.1038/s41467-019-10557-7
pmid: 31142745
|
[6] |
Li J, Hu WX, Luo SQ, et al. Promoter methylation induced epigene-tic silencing of DAZAP2, a downstream effector of p38/MAPK pathway, in multiple myeloma cells[J]. Cell Signal, 2019,60:136-145. DOI: 10.1016/j.cellsig.2019.04.012.
doi: 10.1016/j.cellsig.2019.04.012
pmid: 31034872
|
[7] |
Hervás-Marín D, Higgins F, Sanmartín O, et al. Genome wide DNA methylation profiling identifies specific epigenetic features in high-risk cutaneous squamous cell carcinoma[J]. PLoS One, 2019,14(12):e0223341. DOI: 10.1371/journal.pone.0223341.
doi: 10.1371/journal.pone.0223341
pmid: 31860637
|
[8] |
Yang Y, Wu R, Sargsyan D, et al. UVB drives different stages of epigenome alterations during progression of skin cancer[J]. Cancer Lett, 2019,449:20-30. DOI: 10.1016/j.canlet.2019.02.010.
doi: 10.1016/j.canlet.2019.02.010
pmid: 30771437
|
[9] |
Tam S, Yao CMK, Amit M, et al. Association of immunosuppression with outcomes of patients with cutaneous squamous cell carcinoma of the head and neck[J]. JAMA Otolaryngol Head Neck Surg, 2019,146(2):128-135. DOI: 10.1001/jamaoto.2019.3751.
doi: 10.1001/jamaoto.2019.3751
pmid: 31804658
|
[10] |
Jambusaria-Pahlajani A, Crow LD, Lowenstein S, et al. Predicting skin cancer in organ transplant recipients: development of the SUNTRAC screening tool using data from a multicenter cohort study[J]. Transpl Int, 2019,12:1259-1267. DOI: 10.1111/tri.13493.
|
[11] |
Peters FS, Peeters AMA, Mandaviya PR, et al. Differentially methy-lated regions in T cells identify kidney transplant patients at risk for de novo skin cancer[J]. Clin Epigenetics, 2018,10:81. DOI: 10.1186/s13148-018-0519-7.
doi: 10.1186/s13148-018-0519-7
pmid: 29946375
|
[12] |
Peters FS, Peeters AMA, van den Bosch TPP, et al. Disrupted regulation of serpinB9 in circulating T cells is associated with an increased risk for post-transplant skin cancer[J]. Clin Exp Immunol, 2019,197(3):341-351. DOI: 10.1111/cei.13309.
doi: 10.1111/cei.13309
pmid: 31059128
|
[13] |
Gao X, Cheng Z, Yuan H, et al. K-Ras-PI3K regulates H3K56ac through PCAF to elevate the occurrence and growth of liver cancer[J]. J Cell Physiol, 2020,235(4):3905-3915. DOI: 10.1002/jcp.29284.
doi: 10.1002/jcp.v235.4
pmid: 31642074
|
[14] |
Ichise T, Yoshida N, Ichise H. CBP/p300 antagonises EGFR-Ras-Erk signalling and suppresses increased Ras-Erk signaling-induced tumour formation in mice[J]. J Pathol, 2019,249(1):39-51. DOI: 10.1002/path.5279.
doi: 10.1002/path.5279
pmid: 30953353
|
[15] |
McHugh A, Fernandes K, South AP, et al. Preclinical comparison of proteasome and ubiquitin E1 enzyme inhibitors in cutaneous squamous cell carcinoma: the identification of mechanisms of differential sensitivity[J]. Oncotarget, 2018,9(29):20265-20281. DOI: 10.18632/oncotarget.24750.
doi: 10.18632/oncotarget.24750
pmid: 29755650
|
[16] |
McHugh A, Fernandes K, Chinner N, et al. The identification of potential therapeutic targets for cutaneous squamous cell carcinoma[J]. J Invest Dermatol, 2020,140(6):1154-1165.e5. DOI: 10.1016/j.jid.2019.09.024.
doi: 10.1016/j.jid.2019.09.024
pmid: 31705877
|
[17] |
Xu J, Meng Q, Li X, Yang H, et al. Long noncoding RNA MIR17HG promotes colorectal cancer progression via miR-17-5p[J]. Cancer Res, 2019,79(19):4882-4895. DOI: 10.1158/0008-5472.CAN-18-3880.
doi: 10.1158/0008-5472.CAN-18-3880
pmid: 31409641
|
[18] |
Vidovic D, Huynh TT, Konda P, et al. ALDH1A3-regulated long non-coding RNA NRAD1 is a potential novel target for triple-negative breast tumors and cancer stem cells[J]. Cell Death Differ, 2020,27(1):363-378. DOI: 10.1038/s41418-019-0362-1.
doi: 10.1038/s41418-019-0362-1
pmid: 31197235
|
[19] |
He K, Li WX, Guan D, et al. Regulatory network reconstruction of five essential microRNAs for survival analysis in breast cancer by integrating miRNA and mRNA expression datasets[J]. Funct Integr Genomics, 2019,19(4):645-658. DOI: 10.1007/s10142-019-00670-7.
pmid: 30859354
|
[20] |
Gong ZH, Zhou F, Shi C, et al. miRNA-221 promotes cutaneous squamous cell carcinoma progression by targeting PTEN[J]. Cell Mol Biol Lett, 2019,24:9. DOI: 10.1186/s11658-018-0131-z.
doi: 10.1186/s11658-018-0131-z
pmid: 30891072
|
[21] |
Sand M, Bechara FG, Sand D, et al. Expression profiles of long noncoding RNAs in cutaneous squamous cell carcinoma[J]. Epigenomics, 2016,8(4):501-518. DOI: 10.2217/epi-2015-0012.
doi: 10.2217/epi-2015-0012
pmid: 27067026
|
[22] |
Yu GJ, Sun Y, Zhang DW, et al. Long non-coding RNA HOTAIR functions as a competitive endogenous RNA to regulate PRAF2 expression by sponging miR-326 in cutaneous squamous cell carcinoma[J]. Cancer Cell Int, 2019,19:270. DOI: 10.1186/s12935-019-0992-x.
doi: 10.1186/s12935-019-0992-x
pmid: 31649487
|