[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017[J]. CA Cancer J Clin, 2017,67(1):7-30. DOI: 10.3322/caac.21387.
doi: 10.3322/caac.21387
pmid: 28055103
|
[2] |
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016[J]. CA Cancer J Clin, 2016,66(4):271-289. DOI: 10.3322/caac.21349.
doi: 10.3322/caac.21349
pmid: 27253694
|
[3] |
Lan Q, Liu PY, Haase J, et al. The critical role of RNA m6A methylation in cancer[J]. Cancer Res, 2019,79(7):1285-1292. DOI: 10.1158/0008-5472.CAN-18-2965.
doi: 10.1158/0008-5472.CAN-18-2965
pmid: 30894375
|
[4] |
Liu Q, Gregory RI. RNAmod: an integrated system for the annotation of mRNA modifications[J]. Nucleic Acids Res, 2019,47(W1):W548-W555. DOI: 10.1093/nar/gkz479.
doi: 10.1093/nar/gkz479
pmid: 31147718
|
[5] |
Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein[J]. Nucleic Acids Res, 2017,45(10):6051-6063. DOI: 10.1093/nar/gkx141.
doi: 10.1093/nar/gkx141
pmid: 28334903
|
[6] |
Pan Y, Ma P, Liu Y, et al. Multiple functions of m6A RNA methylation in cancer[J]. J Hematol Oncol, 2018,11(1):48. DOI: 10.1186/s13045-018-0590-8.
doi: 10.1186/s13045-018-0590-8
pmid: 29587823
|
[7] |
Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017,169(7):1187-1200. DOI: 10.1016/j.cell.2017.05.045.
doi: 10.1016/j.cell.2017.05.045
pmid: 28622506
|
[8] |
Wang H, Xu B, Shi J. N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2[J]. Gene, 2020,722:144076. DOI: 10.1016/j.gene.2019.144076.
doi: 10.1016/j.gene.2019.144076
pmid: 31454538
|
[9] |
Cai X, Wang X, Cao C, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g[J]. Cancer Lett, 2018,415:11-19. DOI: 10.1016/j.canlet.2017.11.018.
doi: 10.1016/j.canlet.2017.11.018
pmid: 29174803
|
[10] |
Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases[J]. Mol Cell, 2016,63(2):306-317. DOI: 10.1016/j.molcel.2016.05.041.
doi: 10.1016/j.molcel.2016.05.041
pmid: 27373337
|
[11] |
Yi D, Wang R, Shi X, et al. METTL14 promotes the migration and invasion of breast cancer cells by modulating N6 methyladenosine and hsa miR 146a 5p expression[J]. Oncol Rep, 2020,43(5):1375-1386. DOI: 10.3892/or.2020.7515.
doi: 10.3892/or.2020.7515
pmid: 32323801
|
[12] |
Wu L, Wu D, Ning J, et al. Changes of N6-methyladenosine modulators promote breast cancer progression[J]. BMC Cancer, 2019,19(1):326. DOI: 10.1186/s12885-019-5538-z.
doi: 10.1186/s12885-019-5538-z
pmid: 30953473
|
[13] |
Yue Y, Liu J, Cui X, et al. VIRMA mediates preferential m6A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation[J]. Cell Discov, 2018,4:10. DOI: 10.1038/s41421-018-0019-0.
doi: 10.1038/s41421-018-0019-0
pmid: 29507755
|
[14] |
Qian JY, Gao J, Sun X, et al. KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner[J]. Oncogene, 2019,38(33):6123-6141. DOI: 10.1038/s41388-019-0861-z.
doi: 10.1038/s41388-019-0861-z
pmid: 31285549
|
[15] |
Deng X, Su R, Feng X, et al. Role of N6-methyladenosine modification in cancer[J]. Curr Opin Genet Dev, 2018,48:1-7. DOI: 10.1016/j.gde.2017.10.005.
doi: 10.1016/j.gde.2017.10.005
pmid: 29040886
|
[16] |
Niu Y, Lin Z, Wan A, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3[J]. Mol Cancer, 2019,18(1):46. DOI: 10.1186/s12943-019-1004-4.
doi: 10.1186/s12943-019-1004-4
pmid: 30922314
|
[17] |
Xu Y, Ye S, Zhang N, et al. The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer[J]. Cancer Commun (Lond), 2020,40(10):484-500. DOI: 10.1002/cac2.12075.
|
[18] |
Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast can-cer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA[J]. Proc Natl Acad Sci U S A, 2016,113(14):E2047-2056. DOI: 10.1073/pnas.1602883113.
doi: 10.1073/pnas.1602883113
pmid: 27001847
|
[19] |
Zhang C, Zhi WI, Lu H, et al. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells[J]. Oncotarget, 2016,7(40):64527-64542. DOI: 10.18632/oncotarget.11743.
doi: 10.18632/oncotarget.11743
pmid: 27590511
|
[20] |
Meyer KD, Jaffrey SR. Rethinking m6A readers, writers, and erasers[J]. Annu Rev Cell Dev Biol, 2017: 33:319-342. DOI: 10.1146/annurev-cellbio-100616-060758.
doi: 10.1146/annurev-cellbio-100616-060758
pmid: 28759256
|
[21] |
Patil DP, Pickering BF, Jaffrey SR. Reading m6A in the transcriptome: m6A-binding proteins[J]. Trends Cell Biol, 2018,28(2):113-127. DOI: 10.1016/j.tcb.2017.10.001.
doi: 10.1016/j.tcb.2017.10.001
pmid: 29103884
|
[22] |
Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015,161(6):1388-1399. DOI: 10.1016/j.cell.2015.05.014.
doi: 10.1016/j.cell.2015.05.014
pmid: 26046440
|
[23] |
Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J]. Cell Res, 2017,27(3):315-328. DOI: 10.1038/cr.2017.15.
doi: 10.1038/cr.2017.15
pmid: 28106072
|
[24] |
Xiao W, Adhikari S, Dahal U, et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing[J]. Mol Cell, 2016, 61(4): 507-519. DIO: 10.1016/j.molcel. 2016. 01. 012.
|
[25] |
Hsu PJ, Zhu Y, Ma H, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017,27(9):1115-1127. DOI: 10.1038/cr.2017.99.
doi: 10.1038/cr.2017.99
pmid: 28809393
|
[26] |
Meyer KD, Patil DP, Zhou J, et al. 5'UTR m6A promotes cap-independent translation[J]. Cell, 2015,163(4):999-1010. DOI: 10.1016/j.cell.2015.10.012.
doi: 10.1016/j.cell.2015.10.012
pmid: 26593424
|
[27] |
Liu L, Liu X, Dong Z, et al. N6-methyladenosine-related genomic targets are altered in breast cancer tissue and associated with poor survival[J]. J Cancer, 2019,10(22):5447-5459. DOI: 10.7150/jca.35053.
doi: 10.7150/jca.35053
pmid: 31632489
|
[28] |
Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events[J]. Cell, 2015,162(6):1299-1308. DOI: 10.1016/j.cell.2015.08.011.
doi: 10.1016/j.cell.2015.08.011
pmid: 26321680
|
[29] |
Liu N, Dai Q, Zheng G, et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015,518(7540):560-564. DOI: 10.1038/nature14234.
doi: 10.1038/nature14234
pmid: 25719671
|
[30] |
Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein[J]. Nucleic Acids Res, 2017,45(10):6051-6063. DOI: 10.1093/nar/gkx141.
doi: 10.1093/nar/gkx141
pmid: 28334903
|
[31] |
Klinge CM, Piell KM, Tooley CS. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells[J]. Sci Rep, 2019,9(1):9430. DOI: 10.1038/s41598-019-45636-8.
doi: 10.1038/s41598-019-45636-8
pmid: 31263129
|