国际肿瘤学杂志 ›› 2020, Vol. 47 ›› Issue (12): 746-751.doi: 10.3760/cma.j.cn371439-20200409-00113
收稿日期:
2020-04-09
修回日期:
2020-05-13
出版日期:
2020-12-08
发布日期:
2021-01-28
通讯作者:
于洪升
E-mail:qdhsyu@126.com
Zhou Fei, Liu Rui, Lyu Hongying, Liang Donghai, Chen Wenxiu, Yu Hongsheng()
Received:
2020-04-09
Revised:
2020-05-13
Online:
2020-12-08
Published:
2021-01-28
Contact:
Yu Hongsheng
E-mail:qdhsyu@126.com
摘要:
免疫治疗为头颈部肿瘤提供了新的方法,主要包括肿瘤疫苗、细胞因子、免疫细胞激活和免疫检查点调节剂等。其中免疫检查点抑制剂已获得显著的生存获益,程序性死亡蛋白-1(PD-1)抑制剂派姆单抗和纳武单抗被批准用于复发或转移性头颈部肿瘤的二线治疗,其他免疫治疗尚处于临床试验阶段,安全性和有效性需待进一步评估。
周非, 刘睿, 吕红英, 梁东海, 陈文秀, 于洪升. 头颈部肿瘤的免疫治疗[J]. 国际肿瘤学杂志, 2020, 47(12): 746-751.
Zhou Fei, Liu Rui, Lyu Hongying, Liang Donghai, Chen Wenxiu, Yu Hongsheng. Immunotherapy for head and neck cancer[J]. Journal of International Oncology, 2020, 47(12): 746-751.
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424. DOI: 10.3322/caac.21492.
doi: 10.3322/caac.21492 pmid: 30207593 |
[2] |
Santuray RT, Johnson DE, Grandis JR. New therapies in head and heck cancer[J]. Trends Cancer, 2018,4(5):385-396. DOI: 10.1016/j.trecan.2018.03.006.
doi: 10.1016/j.trecan.2018.03.006 pmid: 29709262 |
[3] |
Colevas AD, Yom SS, Pfister DG, et al. NCCN guidelines insights: head and neck cancers, version 1.2018[J]. J Natl Compr Canc Netw, 2018,16(5):479-490. DOI: 10.6004/jnccn.2018.0026.
doi: 10.6004/jnccn.2018.0026 pmid: 29752322 |
[4] |
Gatti-Mays ME, Redman JM, Collins JM, et al. Cancer vaccines: enhanced immunogenic modulation through therapeutic combinations[J]. Hum Vaccin Immunother, 2017,13(11):2561-2574. DOI: 10.1080/21645515.2017.1364322.
doi: 10.1080/21645515.2017.1364322 pmid: 28857666 |
[5] |
Miles BA, Monk BJ, Safran HP. Mechanistic insights into ADXS11-001 human papillomavirus-associated cancer immunotherapy[J]. Gynecol Oncol Res Pract, 2017,4:9. DOI: 10.1186/s40661-017-0046-9.
doi: 10.1186/s40661-017-0046-9 pmid: 28588899 |
[6] |
Garbuglia AR, Lapa D, Sias C, et al. The use of both therapeutic and prophylactic vaccines in the therapy of papillomavirus disease[J]. Front Immunol, 2020,11:188. DOI: 10.3389/fimmu.2020.00188.
doi: 10.3389/fimmu.2020.00188 pmid: 32133000 |
[7] |
Chaturvedi AK, Graubard BI, Broutian T, et al. Effect of prophylactic human papillomavirus (HPV) vaccination on oral HPV infections among young adults in the United States[J]. J Clin Oncol, 2018,36(3):262-267. DOI: 10.1200/jco.2017.75.0141.
doi: 10.1200/JCO.2017.75.0141 pmid: 29182497 |
[8] |
Reuschenbach M, Pauligk C, Karbach J, et al. A phase 1/2a study to test the safety and immunogenicity of a p16(INK4a) peptide vaccine in patients with advanced human papillomavirus-associated cancers[J]. Cancer, 2016,122(9):1425-1433. DOI: 10.1002/cncr.29925.
doi: 10.1002/cncr.29925 pmid: 26949913 |
[9] |
Yoshitake Y, Fukuma D, Yuno A, et al. Phase Ⅱ clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS[J]. Clin Cancer Res, 2015,21(2):312-321. DOI: 10.1158/1078-0432.CCR-14-0202.
doi: 10.1158/1078-0432.CCR-14-0202 pmid: 25391695 |
[10] |
Aggarwal C, Cohen RB, Morrow MP, et al. Immunotherapy targeting HPV16/18 generates potent immune responses in HPV-associated head and neck cancer[J]. Clin Cancer Res, 2019,25(1):110-124. DOI: 10.1158/1078-0432.ccr-18-1763.
doi: 10.1158/1078-0432.CCR-18-1763 pmid: 30242022 |
[11] |
Schuler PJ, Harasymczuk M, Visus C, et al. Phase Ⅰ dendritic cell p53 peptide vaccine for head and neck cancer[J]. Clin Cancer Res, 2014,20(9):2433-2444. DOI: 10.1158/1078-0432.ccr-13-2617.
doi: 10.1158/1078-0432.CCR-13-2617 pmid: 24583792 |
[12] | Cohen EEW, Moore KN, Slomovitz BM , et al. Phase Ⅰ/Ⅱ study of ADXS11-001 or MEDI4736 immunotherapies alone and in combination, in patients with recurrent/metastatic cervical or human papillomavirus(HPV)-positive head and neck cancer[J]. J Immuno Ther Cancer, 2015,3 Supple2:P147. DOI: 10.1186/2051-1426-3-S2-P147. |
[13] |
Wolf GT, Moyer JS, Kaplan MJ, et al. IRX-2 natural cytokine biologic for immunotherapy in patients with head and neck cancers[J]. OncoTargets Ther, 2018,11:3731-3746. DOI: 10.2147/ott.s165411.
doi: 10.2147/OTT |
[14] |
Berinstein NL, McNamara M, Nguyen A, et al. Increased immune infiltration and chemokine receptor expression in head and neck epithelial tumors after neoadjuvant immunotherapy with the IRX-2 regimen[J]. Oncoimmunology, 2018,7(5):e1423173. DOI: 10.1080/2162402x.2017.1423173.
doi: 10.1080/2162402X.2017.1423173 pmid: 29721379 |
[15] | Mullins SR, Vogel K, Vasilakos J, et al. Abstract 4697: Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment and holds potential for combination with immune checkpoint inhibitors[J]. Can Res, 2017, 77 Suppl 13: 4697. DOI: 10.1158/1538-7445.AM2017-4697. |
[16] |
Ferris RL, Saba NF, Gitlitz BJ, et al. Effect of adding motolimod to standard combination chemotherapy and cetuximab treatment of patients with squamous cell carcinoma of the head and neck[J]. JAMA Oncol, 2018,4(11):1583-1588. DOI: 10.1001/jamaoncol.2018.1888.
doi: 10.1001/jamaoncol.2018.1888 pmid: 29931076 |
[17] |
Ruzsa A, Sen M, Evans M, et al. Phase 2, open-label, 1∶1 randomized controlled trial exploring the efficacy of EMD 1201081 in combination with cetuximab in second-line cetuximab-naïve patients with recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN)[J]. Invest New Drugs, 2014,32(6):1278-1284. DOI: 10.1007/s10637-014-0117-2.
doi: 10.1007/s10637-014-0117-2 pmid: 24894651 |
[18] |
Rosewell Shaw A, Porter CE, Watanabe N, et al. Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer[J]. Mol Ther, 2017,25(11):2440-2451. DOI: 10.1016/j.ymthe.2017.09.010.
doi: 10.1016/j.ymthe.2017.09.010 pmid: 28974431 |
[19] |
Waight JD, Gombos RB, Wilson NS. Harnessing co-stimulatory TNF receptors for cancer immunotherapy: current approaches and future opportunities[J]. Hum Antibodies, 2017,25(3-4):87-109. DOI: 10.3233/hab-160308.
doi: 10.3233/HAB-160308 pmid: 28085016 |
[20] |
Kon E, Benhar I. Immune checkpoint inhibitor combinations: current efforts and important aspects for success[J]. Drug Resist Updat, 2019,45:13-29. DOI: 10.1016/j.drup.2019.07.004.
doi: 10.1016/j.drup.2019.07.004 pmid: 31382144 |
[21] |
Srivastava RM, Trivedi S, Concha-Benavente F, et al. CD137 sti-mulation enhances cetuximab induced natural killer: dendritic cell priming of antitumor T-cell immunity in patients with head and neck cancer[J]. Clin Cancer Res, 2017,23(3):707-716. DOI: 10.1158/1078-0432.ccr-16-0879.
doi: 10.1158/1078-0432.CCR-16-0879 pmid: 27496866 |
[22] |
Nishino M, Ramaiya NH, Hatabu H, et al. Monitoring immune-checkpoint blockade: response evaluation and biomarker development[J]. Nat Rev Clin Oncol, 2017,14(11):655-668. DOI: 10.1038/nrclinonc.2017.88.
doi: 10.1038/nrclinonc.2017.88 pmid: 28653677 |
[23] |
Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial[J]. Lancet Oncol, 2016,17(7):956-965. DOI: 10.1016/s1470-2045(16)30066-3.
doi: 10.1016/S1470-2045(16)30066-3 pmid: 27247226 |
[24] |
Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study[J]. Lancet, 2019,394(10212):1915-1928. DOI: 10.1016/s0140-6736(19)32591-7.
doi: 10.1016/S0140-6736(19)32591-7 pmid: 31679945 |
[25] |
Kiyota N, Hasegawa Y, Takahashi S, et al. A randomized, open-label, phase Ⅲ clinical trial of nivolumab vs. therapy of investigator's choice in recurrent squamous cell carcinoma of the head and neck: a subanalysis of Asian patients versus the global population in checkmate 141[J]. Oral Oncol, 2017,73:138-146. DOI: 10.1016/j.oraloncology.2017.07.023.
doi: 10.1016/j.oraloncology.2017.07.023 pmid: 28939066 |
[26] |
Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab vs investigator's choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression[J]. Oral Oncology, 2018,81:45-51. DOI: 10.1016/j.oraloncology.2018.04.008.
doi: 10.1016/j.oraloncology.2018.04.008 pmid: 29884413 |
[27] |
Saba NF, Blumenschein G Jr, Guigay J, et al. Nivolumab versus investigator's choice in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: efficacy and safety in CheckMate 141 by age[J]. Oral Oncology, 2019,96:7-14. DOI: 10.1016/j.oraloncology.2019.06.017.
doi: 10.1016/j.oraloncology.2019.06.017 pmid: 31422216 |
[28] |
Bonomo P, Desideri I, Loi M, et al. Anti PD-L1 Durvalumab combined with cetuximab and radiotherapy in locally advanced squamous cell carcinoma of the head and neck: a phase Ⅰ/Ⅱ study (DUCRO)[J]. Clin Transl Radiat Oncol, 2018,9:42-47. DOI: 10.1016/j.ctro.2018.01.005.
doi: 10.1016/j.ctro.2018.01.005 pmid: 29594250 |
[29] |
Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response[J]. Nat Med, 2018,24(10):1550-1558. DOI: 10.1038/s41591-018-0136-1.
doi: 10.1038/s41591-018-0136-1 pmid: 30127393 |
[30] |
Pai SI, Zandberg DP, Strome SE. The role of antagonists of the PD-1: PD-L1/PD-L2 axis in head and neck cancer treatment[J]. Oral Oncol, 2016,61:152-158. DOI: 10.1016/j.oraloncology.2016.08.001.
doi: 10.1016/j.oraloncology.2016.08.001 pmid: 27503244 |
[31] |
Jie HB, Schuler PJ, Lee SC, et al. CTLA-4 + regulatory T cells increased in cetuximab-treated head and neck cancer patients suppress NK cell cytotoxicity and correlate with poor prognosis[J]. Cancer Res, 2015,75(11):2200-2210. DOI: 10.1158/0008-5472.CAN-14-2788.
doi: 10.1158/0008-5472.CAN-14-2788 pmid: 25832655 |
[1] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[2] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[3] | 陈琦, 徐晨阳, 王寅, 雷大鹏. 高光谱成像在头颈部肿瘤诊疗中的应用现状[J]. 国际肿瘤学杂志, 2024, 51(5): 298-302. |
[4] | 崔腾璐, 吕璐, 孙鹏飞. 放疗联合免疫治疗在头颈部鳞状细胞癌治疗中的应用[J]. 国际肿瘤学杂志, 2023, 50(9): 548-552. |
[5] | 陈欣祎, 翁一鸣, 魏家燕, 王劲松, 彭敏. 免疫检查点抑制剂在复发或转移性头颈部鳞状细胞癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 553-557. |
[6] | 吕璐, 孙鹏飞. 肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. |
[7] | 鞠逸凡, 徐晨阳, 雷大鹏. 病理组学在头颈部肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 294-298. |
[8] | 黄华玉, 龚虹云, 宋启斌. 胸部放疗联合免疫治疗时代肺炎发生的影响因素[J]. 国际肿瘤学杂志, 2023, 50(2): 102-106. |
[9] | 张雨潇, 张连生, 李莉娟. 新型免疫检查点TIGIT在多发性骨髓瘤免疫治疗中的研究现状与应用前景[J]. 国际肿瘤学杂志, 2023, 50(2): 122-125. |
[10] | 张碧霞, 丁江华. EGFR突变型非小细胞肺癌EGFR-TKI获得性耐药后免疫治疗现状[J]. 国际肿瘤学杂志, 2023, 50(2): 97-101. |
[11] | 许婷婷, 胡超苏, 李宝生. 抗EGFR单抗治疗局部晚期头颈部鳞状细胞癌临床共识(2023年版)[J]. 国际肿瘤学杂志, 2023, 50(1): 1-11. |
[12] | 陈怡, 韩靓, 蔡雳. 头颈部肿瘤患者化疗性口腔黏膜炎发生的多因素分析[J]. 国际肿瘤学杂志, 2022, 49(9): 521-525. |
[13] | 陈文莉, 倪志华, 陈红宇, 畅立圣, 范德生, 刘立伟, 丁青薇. 免疫联合靶向治疗恶性腹膜间皮瘤1例[J]. 国际肿瘤学杂志, 2022, 49(8): 509-512. |
[14] | 孙笑可, 杨宇. 肝细胞癌基因组及转录组特征与免疫相关性[J]. 国际肿瘤学杂志, 2022, 49(5): 302-306. |
[15] | 曾艳, 罗盼, 王子琪, 吴伟莉. 药物在头颈部肿瘤治疗中引起铁死亡的作用机制[J]. 国际肿瘤学杂志, 2022, 49(3): 173-176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||