国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (5): 302-306.doi: 10.3760/cma.j.cn371439-20220221-00056
收稿日期:
2022-02-21
修回日期:
2022-03-31
出版日期:
2022-05-08
发布日期:
2022-05-31
通讯作者:
杨宇,孙娜
E-mail:yangyu13836125585@163.com
Received:
2022-02-21
Revised:
2022-03-31
Online:
2022-05-08
Published:
2022-05-31
Contact:
Yang Yu
E-mail:yangyu13836125585@163.com
摘要:
肝细胞癌是国内常见的恶性肿瘤,其全球发病率持续上升且死亡率高。肝脏基因组的畸变会导致细胞恶性转化以及肝细胞癌的发生,这也是潜在的治疗靶点。肝细胞癌微环境中不同免疫细胞的成分如肿瘤相关巨噬细胞、中性粒细胞可以促进肿瘤进展,细胞毒性T淋巴细胞可破坏肿瘤细胞。细胞中不同的特征基因表型可以促进或抑制免疫耐受,这能够解释肝细胞癌患者对免疫治疗敏感或耐药的潜在原因,为探索新的免疫治疗靶点提供参考。进一步加深对肝细胞癌中基因组与转录组特征的认知以及认识其与免疫治疗的相关性,可为临床诊治提供新思路。
孙笑可, 杨宇. 肝细胞癌基因组及转录组特征与免疫相关性[J]. 国际肿瘤学杂志, 2022, 49(5): 302-306.
Sun Xiaoke, Yang Yu. Correlations between genomic and transcriptome characteristics and immune in hepatocellular carcinoma[J]. Journal of International Oncology, 2022, 49(5): 302-306.
表1
肝细胞癌中主要的体细胞基因组改变"
基因 | 基因组改变 | 占比 | 生物学途径 |
---|---|---|---|
TERT[ | 启动子突变 | 50%~60% | 端粒维持 |
TERT[ | 扩增 | 6% | 端粒维持 |
TERT[ | 易位 | 3% | 端粒维持 |
TP53[ | 失活突变 | 15%~40% | 细胞周期控制 |
CDKN2A[ | 失活突变 | 2%~9% | 细胞周期控制 |
CCND1[ | 扩增 | 7% | 细胞周期控制 |
CTNNB1[ | 激活突变 | 10%~35% | Wnt/β-连环蛋白途径 |
AXIN1[ | 失活突变 | 5%~15% | Wnt/β-连环蛋白途径 |
FGF19[ | 扩增 | 5%~10% | PI3K/AKT-mTOR途径 |
RPS6KA3[ | 失活突变 | 2%~9% | PI3K/AKT-mTOR途径 |
VEGFA[ | 扩增 | 4% | PI3K/AKT-mTOR途径 |
ARID1A[ | 失活突变 | 5%~17% | 染色质重塑 |
ARID2[ | 失活突变 | 3%~18% | 染色质重塑 |
NFE2L2[ | 激活突变 | 3%~6% | 氧化应激途径 |
KEAP1[ | 失活突变 | 2%~8% | 氧化应激途径 |
[1] |
Cheu JW, Wong CC. Mechanistic rationales guiding combination hepatocellular carcinoma therapies involving immune checkpoint inhibitors[J]. Hepatology, 2021, 74(4): 2264-2276. DOI: 10.1002/hep.31840.
doi: 10.1002/hep.31840 |
[2] |
O'Rourke JM, Sagar VM, Shah T, et al. Carcinogenesis on the background of liver fibrosis: implications for the management of hepatocellular cancer[J]. World J Gastroenterol, 2018, 24(39): 4436-4447. DOI: 10.3748/wjg.v24.i39.4436.
doi: 10.3748/wjg.v24.i39.4436 |
[3] |
He Y, Lu M, Che J, et al. Biomarkers and future perspectives for hepatocellular carcinoma immunotherapy[J]. Front Oncol, 2021, 11: 716844. DOI: 10.3389/fonc.2021.716844.
doi: 10.3389/fonc.2021.716844 |
[4] |
El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389(10088): 2492-2502. DOI: 10.1016/S0140-6736(17)31046-2.
doi: S0140-6736(17)31046-2 pmid: 28434648 |
[5] |
Brunner SF, Roberts ND, Wylie LA, et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver[J]. Nature, 2019, 574(7779): 538-542. DOI: 10.1038/s41586-019-1670-9.
doi: 10.1038/s41586-019-1670-9 |
[6] |
Müller M, Bird TG, Nault JC. The landscape of gene mutations in cirrhosis and hepatocellular carcinoma[J]. J Hepatol, 2020, 72(5): 990-1002. DOI: 10.1016/j.jhep.2020.01.019.
doi: 10.1016/j.jhep.2020.01.019 |
[7] |
Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2016, 2: 16018. DOI: 10.1038/nrdp.2016.18.
doi: 10.1038/nrdp.2016.18 pmid: 27158749 |
[8] |
Torrecilla S, Sia D, Harrington AN, et al. Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma[J]. J Hepatol, 2017, 67(6): 1222-1231. DOI: 10.1016/j.jhep.2017.08.013.
doi: S0168-8278(17)32252-3 pmid: 28843658 |
[9] |
Zhu M, Lu T, Jia Y, et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease[J]. Cell, 2019, 177(3): 608-621.e12. DOI: 10.1016/j.cell.2019.03.026.
doi: 10.1016/j.cell.2019.03.026 |
[10] |
Harding JJ, Nandakumar S, Armenia J, et al. Prospective genoty-ping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies[J]. Clin Cancer Res, 2019, 25(7): 2116-2126. DOI: 10.1158/1078-0432.CCR-18-2293.
doi: 10.1158/1078-0432.CCR-18-2293 pmid: 30373752 |
[11] |
Letouzé E, Shinde J, Renault V, et al. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis[J]. Nat Commun, 2017, 8(1): 1315. DOI: 10.1038/s41467-017-01358-x.
doi: 10.1038/s41467-017-01358-x pmid: 29101368 |
[12] |
Nault JC, Martin Y, Caruso S, et al. Clinical impact of genomic diversity from early to advanced hepatocellular carcinoma[J]. Hepatology, 2020, 71(1): 164-182. DOI: 10.1002/hep.30811.
doi: 10.1002/hep.30811 |
[13] |
Schulze K, Imbeaud S, Letouzé E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets[J]. Nat Genet, 2015, 47(5): 505-511. DOI: 10.1038/ng.3252.
doi: 10.1038/ng.3252 |
[14] |
Totoki Y, Tatsuno K, Covington KR, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes[J]. Nat Genet, 2014, 46(12): 1267-1273. DOI: 10.1038/ng.3126.
doi: 10.1038/ng.3126 |
[15] |
Di Agostino S. The impact of mutant p53 in the non-coding RNA world[J]. Biomolecules, 2020, 10(3): 472. DOI: 10.3390/biom 10030472.
doi: 10.3390/biom 10030472 |
[16] |
Takai A, Dang HT, Wang XW. Identification of drivers from cancer genome diversity in hepatocellular carcinoma[J]. Int J Mol Sci, 2014, 15(6): 11142-11160. DOI: 10.3390/ijms150611142.
doi: 10.3390/ijms150611142 |
[17] |
Krutsenko Y, Singhi AD, Monga SP. β-catenin activation in hepatocellular cancer: implications in biology and therapy[J]. Cancers (Basel), 2021, 13(8): 1830. DOI: 10.3390/cancers13081830.
doi: 10.3390/cancers13081830 |
[18] |
Li J, Quan H, Liu Q, et al. Alterations of axis inhibition protein 1 (AXIN1) in hepatitis B virus-related hepatocellular carcinoma and overexpression of AXIN1 induces apoptosis in hepatocellular cancer cells[J]. Oncol Res, 2013, 20(7): 281-288. DOI: 10.3727/096504013x13639794277608.
doi: 10.3727/096504013x13639794277608 |
[19] |
Kurebayashi Y, Ojima H, Tsujikawa H, et al. Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification[J]. Hepatology, 2018, 68(3): 1025-1041. DOI: 10.1002/hep.29904.
doi: 10.1002/hep.29904 pmid: 29603348 |
[20] |
Ovais M, Guo M, Chen C. Tailoring nanomaterials for targeting tumor-associated macrophages[J]. Adv Mater, 2019, 31(19): e1808303. DOI: 10.1002/adma.201808303.
doi: 10.1002/adma.201808303 |
[21] |
Pose E, Coll M, Martínez-Sánchez C, et al. Programmed death ligand 1 is overexpressed in liver macrophages in chronic liver diseases, and its blockade improves the antibacterial activity against infections[J]. Hepatology, 2021, 74(1): 296-311. DOI: 10.1002/hep.31644.
doi: 10.1002/hep.31644 |
[22] |
Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils[J]. Annu Rev Pathol, 2014, 9: 181-218. DOI: 10.1146/annurev-pathol-020712-164023.
doi: 10.1146/annurev-pathol-020712-164023 pmid: 24050624 |
[23] |
Nishida N, Kudo M. Oncogenic signal and tumor microenvironment in hepatocellular carcinoma[J]. Oncology, 2017, 93(Suppl-1): 160-164. DOI: 10.1159/000481246.
doi: 10.1159/000481246 |
[24] |
Ringelhan M, Pfister D, O’Connor T, et al. The immunology of hepatocellular carcinoma[J]. Nat Immunol, 2018, 19(3): 222-232. DOI: 10.1038/s41590-018-0044-z.
doi: 10.1038/s41590-018-0044-z pmid: 29379119 |
[25] |
Huang Y, Wang FM, Wang T, et al. Tumor-infiltrating FoxP3+ tregs and CD8+ T cells affect the prognosis of hepatocellular carcinoma patients[J]. Digestion, 2012, 86(4): 329-337. DOI: 10.1159/000342801.
doi: 10.1159/000342801 pmid: 23207161 |
[26] |
McGovern BH, Golan Y, Lopez M, et al. The impact of cirrhosis on CD4+ T cell counts in HIV-seronegative patients[J]. Clin Infect Dis, 2007, 44(3): 431-437. DOI: 10.1086/509580.
doi: 10.1086/509580 pmid: 17205454 |
[27] |
Zheng C, Zheng L, Yoo JK, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing[J]. Cell, 2017, 169(7): 1342-1356.e16. DOI: 10.1016/j.cell.2017.05.035.
doi: 10.1016/j.cell.2017.05.035 |
[28] |
Wang JC, Livingstone AM. Cutting edge: CD4+T cell help can be essential for primary CD8+T cell responses in vivo[J]. J Immunol, 2003, 171(12): 6339-6343. DOI: 10.4049/jimmunol.171.12.6339.
doi: 10.4049/jimmunol.171.12.6339 |
[29] |
Cai L, Zhang Z, Zhou L, et al. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients[J]. Clin Immunol, 2008, 129(3): 428-437. DOI: 10.1016/j.clim.2008.08.012.
doi: 10.1016/j.clim.2008.08.012 |
[30] |
Tcyganov E, Mastio J, Chen E, et al. Plasticity of myeloid-derived suppressor cells in cancer[J]. Curr Opin Immunol, 2018, 51: 76-82. DOI: 10.1016/j.coi.2018.03.009.
doi: S0952-7915(17)30109-7 pmid: 29547768 |
[31] |
Liu Z, Zhang Y, Shi C, et al. A novel immune classification reveals distinct immune escape mechanism and genomic altera-tions: implications for immunotherapy in hepatocellular carcinoma[J]. J Transl Med, 2021, 19(1): 5. DOI: 10.1186/s12967-020-02697-y.
doi: 10.1186/s12967-020-02697-y |
[32] |
Pinyol R, Sia D, Llovet JM. Immune exclusion-Wnt/CTNNB1 class predicts resistance to immunotherapies in HCC[J]. Clin Cancer Res, 2019, 25(7): 2021-2023. DOI: 10.1158/1078-0432.CCR-18-3778.
doi: 10.1158/1078-0432.CCR-18-3778 pmid: 30617138 |
[33] |
Choi M, Kadara H, Zhang J, et al. Mutation profiles in early-stage lung squamous cell carcinoma with clinical follow-up and correlation with markers of immune function[J]. Ann Oncol, 2017, 28(1): 83-89. DOI: 10.1093/annonc/mdw437.
doi: 10.1093/annonc/mdw437 pmid: 28177435 |
[34] |
Shen J, Ju Z, Zhao W, et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade[J]. Nat Med, 2018, 24(5): 556-562. DOI: 10.1038/s41591-018-0012-z.
doi: 10.1038/s41591-018-0012-z |
[35] |
Berger MF, Mardis ER. The emerging clinical relevance of geno-mics in cancer medicine[J]. Nat Rev Clin Oncol, 2018, 15(6): 353-365. DOI: 10.1038/s41571-018-0002-6.
doi: 10.1038/s41571-018-0002-6 |
[36] |
Ou Q, Yu Y, Li A, et al. Association of survival and genomic mutation signature with immunotherapy in patients with hepatocellular carcinoma[J]. Ann Transl Med, 2020, 8(5): 230. DOI: 10.21037/atm.2020.01.32.
doi: 10.21037/atm.2020.01.32 |
[1] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[2] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[3] | 吕璐, 孙鹏飞. 肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. |
[4] | 黄华玉, 龚虹云, 宋启斌. 胸部放疗联合免疫治疗时代肺炎发生的影响因素[J]. 国际肿瘤学杂志, 2023, 50(2): 102-106. |
[5] | 张雨潇, 张连生, 李莉娟. 新型免疫检查点TIGIT在多发性骨髓瘤免疫治疗中的研究现状与应用前景[J]. 国际肿瘤学杂志, 2023, 50(2): 122-125. |
[6] | 张碧霞, 丁江华. EGFR突变型非小细胞肺癌EGFR-TKI获得性耐药后免疫治疗现状[J]. 国际肿瘤学杂志, 2023, 50(2): 97-101. |
[7] | 和婷, 王希, 张惠中, 刘昕阳, 王会平, 董轲. 血清TIM-3对肝癌患者诊断价值的研究[J]. 国际肿瘤学杂志, 2022, 49(9): 537-542. |
[8] | 陈文莉, 倪志华, 陈红宇, 畅立圣, 范德生, 刘立伟, 丁青薇. 免疫联合靶向治疗恶性腹膜间皮瘤1例[J]. 国际肿瘤学杂志, 2022, 49(8): 509-512. |
[9] | 黄华玉, 宋启斌, 龚虹云, 宋佳. 接受胸部放疗和免疫治疗肺癌患者肺炎发生率及影响因素分析[J]. 国际肿瘤学杂志, 2022, 49(12): 718-723. |
[10] | 李瑛珏, 路丹. PI3K通路在肿瘤免疫微环境中的作用机制[J]. 国际肿瘤学杂志, 2022, 49(11): 677-680. |
[11] | 徐秋月, 马咸梅, 岳琦. 基于分子分型的子宫内膜癌免疫治疗[J]. 国际肿瘤学杂志, 2022, 49(11): 700-704. |
[12] | 林先勇, 胡翔, 殷海涛. 免疫治疗联合放化疗治疗非小细胞肺癌的临床研究进展[J]. 国际肿瘤学杂志, 2022, 49(1): 56-60. |
[13] | 安江宏, 钱莘, 骆璞, 谭晓华. 肠道微生态与肿瘤的诊断和治疗[J]. 国际肿瘤学杂志, 2021, 48(7): 436-440. |
[14] | 孙睿婕, 单宁宁. 复发难治性多发性骨髓瘤的免疫靶向治疗及存在的问题[J]. 国际肿瘤学杂志, 2021, 48(6): 381-384. |
[15] | 王芳, 王鹏, 康晓静. 卡波西肉瘤相关疱疹病毒与宿主免疫在卡波西肉瘤发病中的作用机制及免疫治疗[J]. 国际肿瘤学杂志, 2021, 48(6): 377-380. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||