国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (4): 225-230.doi: 10.3760/cma.j.cn371439-20200722-00045
吴汉生1,2,3, 黄树杰2,4, 庄伟涛2,4, 丁宇2,3, 高枕2,3, 乔贵宾2,3,4()
收稿日期:
2020-07-22
修回日期:
2020-12-07
出版日期:
2021-04-08
发布日期:
2021-06-18
通讯作者:
乔贵宾
E-mail:guibinqiao@126.com
基金资助:
Wu Hansheng1,2,3, Huang Shujie2,4, Zhuang Weitao2,4, Ding Yu2,3, Gao Zhen2,3, Qiao Guibin2,3,4()
Received:
2020-07-22
Revised:
2020-12-07
Online:
2021-04-08
Published:
2021-06-18
Contact:
Qiao Guibin
E-mail:guibinqiao@126.com
Supported by:
摘要:
N6-甲基腺嘌呤(m6A)甲基化修饰的生物学作用已被逐渐深入研究,在肿瘤中显示出越来越高的价值。近年来,随着对表观遗传学在RNA修饰方面的深入研究,诸多研究表明m6A甲基化修饰在肺癌的发生与发展中发挥了重要作用。m6A相关修饰蛋白具有成为肺癌临床诊治靶标的潜在应用价值。
吴汉生, 黄树杰, 庄伟涛, 丁宇, 高枕, 乔贵宾. m6A甲基化修饰与肺癌[J]. 国际肿瘤学杂志, 2021, 48(4): 225-230.
Wu Hansheng, Huang Shujie, Zhuang Weitao, Ding Yu, Gao Zhen, Qiao Guibin. m6A methylation modification and lung cancer[J]. Journal of International Oncology, 2021, 48(4): 225-230.
[1] | Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update[J]. Nucleic Acids Res, 2018, 46(D1):D303-D307. DOI: 10.1093/nar/gkx1030. |
[2] |
Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2):93-95. DOI: 10.1038/nchembio.1432.
doi: 10.1038/nchembio.1432 |
[3] |
Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016, 537(7620):369-373. DOI: 10.1038/nature19342.
doi: 10.1038/nature19342 |
[4] | Knuckles P, Lence T, Haussmann IU, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d [J]. Genes Dev, 2018, 32(5-6):415-429. DOI: 10.1101/gad.309146.117. |
[5] |
Chen XY, Zhang J, Zhu JS. The role of m6A RNA methylation in human cancer[J]. Mol Cancer, 2019, 18(1):103. DOI: 10.1186/s12943-019-1033-z.
doi: 10.1186/s12943-019-1033-z |
[6] |
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1):18-29. DOI: 10.1016/j.molcel.2012.10.015.
doi: 10.1016/j.molcel.2012.10.015 |
[7] |
Du H, Zhao Y, He J, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex[J]. Nat Commun, 2016, 7:12626. DOI: 10.1038/ncomms12626.
doi: 10.1038/ncomms12626 |
[8] |
Xiao W, Adhikari S, Dahal U, et al. Nuclear m(66)A reader YTHDC1 regulates mRNA splicing[J]. Mol Cell, 2016, 61(4):507-519. DOI: 10.1016/j.molcel.2016.01.012.
doi: 10.1016/j.molcel.2016.01.012 |
[9] |
Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015, 161(6):1388-1399. DOI: 10.1016/j.cell.2015.05.014.
doi: 10.1016/j.cell.2015.05.014 |
[10] |
Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J]. Cell Res, 2017, 27(3):315-328. DOI: 10.1038/cr.2017.15.
doi: 10.1038/cr.2017.15 |
[11] |
Huang H, Weng H, Sun W, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation [J]. Nat Cell Biol, 2018, 20(3):285-295. DOI: 10.1038/s41556-018-0045-z.
doi: 10.1038/s41556-018-0045-z |
[12] |
Liu N, Dai Q, Zheng G, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540):560-564. DOI: 10.1038/nature14234.
doi: 10.1038/nature14234 |
[13] |
Meyer KD, Patil DP, Zhou J, et al. 5'UTR m(6)A promotes cap-independent translation[J]. Cell, 2015, 163(4):999-1010. DOI: 10.1016/j.cell.2015.10.012.
doi: 10.1016/j.cell.2015.10.012 pmid: 26593424 |
[14] |
Lin S, Choe J, Du P, et al. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells[J]. Mol Cell, 2016, 62(3):335-345. DOI: 10.1016/j.molcel.2016.03.021.
doi: 10.1016/j.molcel.2016.03.021 |
[15] |
Wei W, Huo B, Shi X. miR- 600 inhibits lung cancer via down-regulating the expression of METTL3[J]. Cancer Manag Res, 2019, 11:1177-1187. DOI: 10.2147/cmar.s181058.
doi: 10.2147/CMAR |
[16] |
Zhou R, Gao Y, Lv D, et al. METTL3 mediated m6A modification plays an oncogenic role in cutaneous squamous cell carcinoma by regulating ΔNp63[J]. Biochem Biophys Res Commun, 2019, 515(2):310-317. DOI: 10.1016/j.bbrc.2019.05.155.
doi: 10.1016/j.bbrc.2019.05.155 |
[17] |
Cheng M, Sheng L, Gao Q, et al. The m6A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network[J]. Oncogene, 2019, 38(19):3667-3680. DOI: 10.1038/s41388-019-0683-z.
doi: 10.1038/s41388-019-0683-z |
[18] |
Du M, Zhang Y, Mao Y, et al. MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA[J]. Biochem Biophys Res Commun, 2017, 482(4):582-589. DOI: 10.1016/j.bbrc.2016.11.077.
doi: 10.1016/j.bbrc.2016.11.077 |
[19] |
Wanna-Udom S, Terashima M, Lyu H, et al. The m6A methyltransferase METTL3 contributes to transforming growth factor-beta-induced epithelial-mesenchymal transition of lung cancer cells through the regulation of JUNB[J]. Biochem Biophys Res Commun, 2020, 524(1):150-155. DOI: 10.1016/j.bbrc.2020.01.042.
doi: 10.1016/j.bbrc.2020.01.042 |
[20] | Zhang P, He Q, Lei Y, et al. m6A-mediated ZNF750 repression facilitates nasopharyngeal carcinoma progression[J]. Cell Death Dis, 2018, 9(12): 1169. DOI: 10.1038/s41419-018-1224-3. |
[21] |
Liu J, Eckert MA, Harada BT, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer[J]. Nat Cell Biol, 2018, 20(9):1074-1083. DOI: 10.1038/s41556-018-0174-4.
doi: 10.1038/s41556-018-0174-4 |
[22] |
Liu Y, Guo X, Zhao M, et al. Contributions and prognostic values of m6A RNA methylation regulators in non-small-cell lung cancer[J]. J Cell Physiol, 2020, 235(9):6043-6057. DOI: 10.1002/jcp.29531.
doi: 10.1002/jcp.v235.9 |
[23] |
Weng H, Huang H, Wu H, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification [J]. Cell Stem Cell, 2018, 22(2):191-205,e9. DOI: 10.1016/j.stem.2017.11.016.
doi: 10.1016/j.stem.2017.11.016 |
[24] |
Liu J, Ren D, Du Z, et al. m6A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression[J]. Biochem Biophys Res Commun, 2018, 502(4):456-464. DOI: 10.1016/j.bbrc.2018.05.175.
doi: 10.1016/j.bbrc.2018.05.175 |
[25] |
Li J, Han Y, Zhang H, et al. The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA[J]. Biochem Biophys Res Commun, 2019, 512(3):479-485. DOI: 10.1016/j.bbrc.2019.03.093.
doi: 10.1016/j.bbrc.2019.03.093 |
[26] |
Ding Y, Qi N, Wang K, et al. FTO facilitates lung adenocarcinoma cell progression by activating cell migration through mRNA demethy-lation[J]. Onco Targets Ther, 2020, 13:1461-1470. DOI: 10.2147/ott.s231914.
doi: 10.2147/OTT |
[27] |
Jin D, Guo J, Wu Y, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC[J]. Mol Cancer, 2020, 19(1): 40. DOI: 10.1186/s12943-020-01161-1.
doi: 10.1186/s12943-020-01161-1 |
[28] |
Zhu Z, Qian Q, Zhao X, et al. N6-methyladenosine ALKBH5 promotes non-small cell lung cancer progress by regulating TIMP3 stabi-lity[J]. Gene, 2020, 731: 144348. DOI: 10.1016/j.gene.2020.144348.
doi: 10.1016/j.gene.2020.144348 |
[29] |
Chao Y, Shang J, Ji W. ALKBH5-m6A-FOXM1 signaling axis promotes proliferation and invasion of lung adenocarcinoma cells under intermittent hypoxia [J]. Biochem Biophys Res Commun, 2020, 521(2):499-506. DOI: 10.1016/j.bbrc.2019.10.145.
doi: 10.1016/j.bbrc.2019.10.145 |
[30] |
Zhuang Z, Chen L, Mao Y, et al. Diagnostic, progressive and prognostic performance of m6A methylation RNA regulators in lung adenocarcinoma[J]. Int J Biol Sci, 2020, 16(11):1785-1797. DOI: 10.7150/ijbs.39046.
doi: 10.7150/ijbs.39046 |
[31] |
Li Z, Weng H, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase[J]. Cancer Cell, 2017, 31(1):127-141. DOI: 10.1016/j.ccell.2016.11.017.
doi: 10.1016/j.ccell.2016.11.017 |
[32] |
Vu LP, Pickering BF, Cheng Y, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells[J]. Nat Med, 2017, 23(11):1369-1376. DOI: 10.1038/nm.4416.
doi: 10.1038/nm.4416 |
[33] |
Barbieri I, Tzelepis K, Pandolfini L, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control[J]. Nature, 2017, 552(7683):126-131. DOI: 10.1038/nature24678.
doi: 10.1038/nature24678 |
[34] |
Zhou S, Bai ZL, Xia D, et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation[J]. Mol Carcinog, 2018, 57(5):590-597. DOI: 10.1002/mc.22782.
doi: 10.1002/mc.v57.5 |
[35] |
Niu Y, Lin Z, Wan A, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3[J]. Mol Cancer, 2019, 18(1):46. DOI: 10.1186/s12943-019-1004-4.
doi: 10.1186/s12943-019-1004-4 pmid: 30922314 |
[36] |
Rong ZX, Li Z, He JJ, et al. Downregulation of fat mass and obesity associated (FTO) promotes the progression of intrahepatic cholangiocarcinoma[J]. Front Oncol, 2019, 9:369. DOI: 10.3389/fonc.2019.00369.
doi: 10.3389/fonc.2019.00369 |
[37] |
He Y, Hu H, Wang Y, et al. ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methy-lation[J]. Cell Physiol Biochem, 2018, 48(2):838-846. DOI: 10.1159/000491915.
doi: 10.1159/000491915 |
[38] | Zhang Y, Liu X, Liu L, et al. Expression and prognostic significance of m6A-related genes in lung adenocarcinoma[J]. Med Sci Monit, 2020, 26:e919644. DOI: 10.12659/msm.919644. |
[39] |
Shi Y, Fan S, Wu M, et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression[J]. Nat Commun, 2019, 10(1): 4892. DOI: 10.1038/s41467-019-12801-6.
doi: 10.1038/s41467-019-12801-6 |
[40] |
Sheng H, Li Z, Su S, et al. YTH domain family 2 promotes lung cancer cell growth by facilitating 6-phosphogluconate dehydrogenase mRNA translation[J]. Carcinogenesis, 2020, 41(5):541-550. DOI: 10.1093/carcin/bgz152.
doi: 10.1093/carcin/bgz152 pmid: 31504235 |
[41] | Shi R, Yu X, Wang Y, et al. Expression profile, clinical significance, and biological function of insulin-like growth factor 2 messenger RNA-binding proteins in non-small cell lung cancer[J]. Tumour Biol, 2017, 39(4): 1010428317695928. DOI: 10.1177/1010428317695928. |
[42] |
Rosenfeld YB, Krumbein M, Yeffet A, et al. VICKZ1 enhances tumor progression and metastasis in lung adenocarcinomas in mice[J]. Oncogene, 2019, 38(21):4169-4181. DOI: 10.1038/s41388-019-0715-8.
doi: 10.1038/s41388-019-0715-8 |
[43] | Wang D, Jia Y, Zheng W, et al. Overexpression of eIF3D in lung adenocarcinoma is a new independent prognostic marker of poor survival[J]. Dis Markers, 2019, 2019:6019637. DOI: 10.1155/2019/6019637. |
[44] |
Tian Y, Zhao K, Yuan L, et al. EIF3B correlates with advanced disease stages and poor prognosis, and it promotes proliferation and inhibits apoptosis in non-small cell lung cancer[J]. Cancer Biomark, 2018, 23(2):291-300. DOI: 10.3233/CBM-181628.
doi: 10.3233/CBM-181628 pmid: 30198870 |
[45] |
Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5[J]. Nucleic Acids Res, 2015, 43(1):373-384. DOI: 10.1093/nar/gku1276.
doi: 10.1093/nar/gku1276 |
[46] |
Hu Y, Wang S, Liu J, et al. New sights in cancer: component and function of N6-methyladenosine modification[J]. Biomed Pharmacother, 2020, 122:109694. DOI: 10.1016/j.biopha.2019.109694.
doi: 10.1016/j.biopha.2019.109694 |
[47] | Yang S, Wei J, Cui YH, et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade[J]. Nat Commun, 2019, 10(1): 2782. DOI: 10.1038/s41467-019-10669-0. |
[48] | Jin D, Guo J, Wu Y, et al. m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis[J]. J Hematol Oncol, 2019, 12(1): 135. DOI: 10.1186/s13045-019-0830-6. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[3] | 贺嘉慧, 胡钦勇. 基于GBD数据的中国和美国肺癌发病和死亡趋势及危险因素对比分析[J]. 国际肿瘤学杂志, 2024, 51(1): 29-36. |
[4] | 李雄安, 颜艳艳. 丙戊酸镁用于治疗继发癫痫的晚期肺癌脑转移患者1例报道[J]. 国际肿瘤学杂志, 2023, 50(3): 191-192. |
[5] | 左小平, 刘晓川, 吴西强, 李周, 夏天, 刘国凤. 老年早期肺癌患者经胸腔镜肺切除术后心律失常发生的危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2023, 50(12): 711-716. |
[6] | 陈郁, 许华, 刘海, 陈士新. 基于CT影像学特征的恶性肺纯磨玻璃结节患者病理分型预测模型构建[J]. 国际肿瘤学杂志, 2023, 50(11): 655-660. |
[7] | 张万芳, 王尤, 苏晶, 陈刚, 周福祥. 肺原发尤文肉瘤/原始神经外胚层瘤1例[J]. 国际肿瘤学杂志, 2023, 50(1): 62-64. |
[8] | 杨莎, 杨晓华, 王苏华, 薛晓燕, 徐俊. 老年肺癌胸腔镜手术后下肢深静脉血栓的危险因素分析及预测模型的建立和验证[J]. 国际肿瘤学杂志, 2022, 49(9): 532-536. |
[9] | 王津, 张耀圣, 孙婷婷, 王丹, 胡乃东. 以前胸壁聚集性多发蕈状肿物为表现的肺腺鳞状细胞癌皮肤转移1例[J]. 国际肿瘤学杂志, 2022, 49(9): 575-576. |
[10] | 陈煌婧, 朱鹏飞, 张晴, 陈桂芳, 杨春林, 何英. 超声造影和CT引导下经皮穿刺活检在周围型肺肿块诊断中临床价值的比较[J]. 国际肿瘤学杂志, 2022, 49(8): 459-463. |
[11] | 蔡刚祥, 李境, 许斌. 肺癌新辅助免疫治疗研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 366-370. |
[12] | 韩丛丛, 付帅, 谢超, 张建军, 张秋景, 祝情情, 刘杰. 吉非替尼、培美曲塞和贝伐珠单抗一线治疗EGFR突变晚期肺腺癌的有效性和安全性[J]. 国际肿瘤学杂志, 2022, 49(6): 376-379. |
[13] | 王永洪, 何弢, 李星, 罗启余, 王乔羽. 信迪利单抗致晚期鳞状细胞肺癌患者致死性中毒性表皮坏死松解症1例[J]. 国际肿瘤学杂志, 2022, 49(6): 380-382. |
[14] | 张静娴, 易丹, 李小江. 抗体偶联药物在非小细胞肺癌中的应用[J]. 国际肿瘤学杂志, 2022, 49(5): 296-301. |
[15] | 高敏, 冯静, 王丽, 钟海, 文昱婷, 万兵, 张秀伟. 微生物群与肺癌的早期诊断及辅助治疗[J]. 国际肿瘤学杂志, 2022, 49(4): 247-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||