[1] Kim JT, Lee SJ, Kang MA, et al. Cystatin SN neutralizes the
inhibitory effect of cystatin C on cathepsin B activity[J]. Cell Death
Dis, 2013, 4: e974. DOI: 10.1038/cddis.2013.485.
[2] Nandy SK, Bhuyan R, Seal A. Modelling family 2 cystatins and their
interaction with papain[J]. J Biomol Struct Dyn, 2013, 31(6): 649-664.
DOI: 10.1080/07391102.2012.706403.
[3] Magister S, Kos J. Cystatins in immune system[J]. J Cancer, 2013,
4(1): 45-56. DOI: 10.7150/jca.5044.
[4] SousaPereira SP, Abrantes J, Pinheiro A, et al. Evolution of C, D
and Stype cystatins in mammals: an extensive gene duplication in primates
[J]. PLoS One, 2014, 9(10): e109050. DOI: 10.1371/journal.pone.0109050.
[5] Morzel M, Chabanet C, Schwartz C, et al. Salivary protein profiles
are linked to bitter taste acceptance in infants[J]. Eur J Pediatr, 2014,
173(5): 575-582. DOI: 10.1007/s004310132216z.
[6] de SousaPereira SP, Amado F, Abrantes J, et al. An evolutionary
perspective of mammal salivary peptide families: cystatins, histatins,
statherin and PRPs[J]. Arch Oral Biol, 2013, 58(5): 451-458. DOI:
10.1016/j.archoralbio.2012.12.011.
[7] Manconi B, Cabras T, Pisano E, et al. Modifications of the acidic
soluble salivary proteome in human children from birth to the age of 48
months investigated by a topdown HPLCESIMS platform[J]. J
Proteomics, 2013, 91(91): 536-543. DOI: 10.1016/j.jprot.2013.08.009.
[8] Dsamou M, Morzel M, Le Corre L, et al. Caffeine increases the
expression of cystatin SN in human submandibular acinarlike HSG cells[J
]. Arch Oral Biol, 2013, 58(10): 1511-1516. DOI:
10.1016/j.archoralbio.2013.06.005.
[9] Sanna M, Firinu D, Manconi PE, et al. The salivary proteome profile
in patients affected by SAPHO syndrome characterized by a topdown
RPHPLCESIMS platform[J]. Mol Biosyst, 2015, 11(6): 1552-1562. DOI:
10.1039/c4mb00719k.
[10] Dsamou M, Palicki O, Septier C, et al. Salivary protein profiles and
sensitivity to the bitter taste of caffeine[J]. Chem Senses, 2012, 37(1):
87-95. DOI: 10.1093/chemse/bjr070.
[11] Fornander L, Graff P, Whlén K, et al. Airway symptoms and
biological markers in nasal lavage fluid in subjects exposed to
metalworking fluids[J]. PLoS One, 2013, 8(12): e83089. DOI:
10.1371/journal.pone.0083089.
[12] Imoto Y, Tokunaga T, Matsumoto Y, et al. Cystatin SN upregulation in
patients with seasonal allergic rhinitis[J]. PLoS One, 2013, 8(8):
e67057. DOI: 10.1371/journal.pone.0067057.
[13] Yoneda K, Iida H, Endo H, et al. Identification of cystatin SN as a
novel tumor marker for colorectal cancer[J]. Int J Oncol, 2009, 35(1): 33
-40.
[14] Jiang J, Liu HL, Liu ZH, et al. Identification of cystatin SN as a
novel biomarker for pancreatic cancer[J]. Tumour Biol, 2015, 36(5): 3903
-3910. DOI: 10.1007/s1327701430333.
[15] Cao X, Li Y, Luo RZ, et al. Expression of cystatin SN significantly
correlates with recurrence, metastasis, and survival duration in surgically
resected nonsmall cell lung cancer patients[J]. Sci Rep, 2015, 5: 8230.
DOI: 10.1038/srep08230.
[16] Blanco MA, Leroy G, Khan Z, et al. Global secretome analysis
identifies novel mediators of bone metastasis[J]. Cell Res, 2012, 22(9):
1339-1355. DOI: 10.1038/cr.2012.89.
[17] Liu XF, Xiang L, Zhang Y, et al. CAPC negatively regulates NFκB
activation and suppresses tumor growth and metastasis[J]. Oncogene, 2012,
31(13): 1673-1682. DOI: 10.1038/onc.2011.355.
[18] Keppler D, Zhang J, Bihani T, et al. Novel expression of CST1 as
candidate senescence marker[J]. J Gerontol A Biol Sci Med Sci, 2011, 66
(7): 723-731.
[19] Chen YF, Ma G, Cao X, et al. Overexpression of cystatin SN
positively affects survival of patients with surgically resected esophageal
squamous cell carcinoma[J]. BMC Surg, 2013, 13: 15. DOI:
10.1186/147124821315.
[20] Choi EH, Kim JT, Kim JH, et al. Upregulation of the cysteine
protease inhibitor, cystatin SN, contributes to cell proliferation and
cathepsin inhibition in gastric cancer[J]. Clin Chim Acta, 2009, 406
(12): 45-51. DOI: 10.1016/j.cca.2009.05.008.
[21] Pramanik KC, Fofaria NM, Gupta P, et al. Inhibition of βcatenin
signaling suppresses pancreatic tumor growth by disrupting nuclear
βcatenin/TCF1 complex: critical role of STAT3[J]. Oncotarget,
2015, 6(13): 11561-11574. DOI: 10.18632/oncotarget.3427.
[22] Mullapudi N, Ye B, Suzuki M, et al. Genome wide methylome
alterations in lung cancer[J]. PLoS One, 2015, 10(12): e0143826. DOI:
10.1371/journal.pone.0143826.
[23] Kim YI, Lee J, Choi YJ, et al. Proteogenomic study beyond chromosome
9: new insight into expressed variant proteome and transcriptome in human
lung adenocarcinoma tissues[J]. J Proteome Res, 2015, 14(12): 5007-5016.
DOI: 10.1021/acs.jproteome.5b00544 |