[1] |
郑荣寿, 孙可欣, 张思维 , 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019,41(1):19-28. DOI: 10.3760/cma.j.issn.0253-3766.2019.01.005.
|
[2] |
Palma DA, Senan S, Tsujino K , et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis[J]. Int J Radiat Oncol Biol Phys, 2013,85(2):444-450. DOI: 10.1016/j.ijrobp.2012.04.043.
doi: 10.1016/j.ijrobp.2012.04.043
|
[3] |
Ding NH, Li JJ, Sun LQ . Molecular mechanisms and treatment of radiation-induced lung fibrosis[J]. Curr Drug Targets, 2013,14(11):1347-1356. DOI: 10.2174/13894501113149990198.
|
[4] |
郑啓盛, 刘培勋 . 放射性肺纤维化的分子机制及其防治药物综述[J]. 辐射研究与辐射工艺学报, 2016,34(1):3-12. DOI: 10.11889/j.1000-3436.2016.rrj.34.010101.
|
[5] |
Choi SH, Hong ZY, Nam JK , et al. A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis[J]. Clin Cancer Res, 2015,21(16):3716-3726. DOI: 10.1158/1078-0432.Ccr-14-3193.
|
[6] |
Richeldi L, Collard HR, Jones MG . Idiopathic pulmonary fibrosis[J]. Lancet, 2017,389(10082):1941-1952. DOI: 10.1016/s0140-6736(17)30866-8.
|
[7] |
Giridhar P, Mallick S, Rath GK , et al. Radiation induced lung injury: prediction, assessment and management[J]. Asian Pac J Cancer Prev, 2015,16(7):2613-2617. DOI: 10.7314/apjcp.2015.16.7.2613.
|
[8] |
Ozawa Y, Abe T, Omae M , et al. Impact of preexisting interstitial lung disease on acute, extensive radiation pneumonitis: retrospective analysis of patients with lung cancer[J]. PLoS One, 2015,10(10):e0140437. DOI: 10.1371/journal.pone.0140437.
|
[9] |
Briere TM, Krafft S, Liao Z , et al. Lung size and the risk of radiation pneumonitis[J]. Int J Radiat Oncol Biol Phys, 2016,94(2):377-384. DOI: 10.1016/j.ijrobp.2015.10.002.
|
[10] |
Torre-Bouscoulet L, Muñoz-Montaño WR, Martínez-Briseño D , et al. Abnormal pulmonary function tests predict the development of radiation-induced pneumonitis in advanced non-small cell lung cancer[J]. Respir Res, 2018,19(1):72. DOI: 10.1186/s12931-018-0775-2.
|
[11] |
Zhao J, Yorke ED, Li L , et al. Simple factors associated with radiation-induced lung toxicity after stereotactic body radiation therapy of the thorax: a pooled analysis of 88 studies[J]. Int J Radiat Oncol Biol Phys, 2016,95(5):1357-1366. DOI: 10.1016/j.ijrobp.2016.03.024.
|
[12] |
Liang J, Bi N, Wu S , et al. Etoposide and cisplatin versus paclitaxel and carboplatin with concurrent thoracic radiotherapy in unresectable stage Ⅲ non-small cell lung cancer: a multicenter randomized phase Ⅲ trial[J]. Ann Oncol, 2017,28(4):777-783. DOI: 10.1093/annonc/mdx009.
|
[13] |
Pan WY, Bian C, Zou GL , et al. Combing NLR, V20 and mean lung dose to predict radiation induced lung injury in patients with lung cancer treated with intensity modulated radiation therapy and chemotherapy[J]. Oncotarget, 2017,8(46):81387-81393. DOI: 10.18632/oncotarget.19032.
|
[14] |
Giuliani ME, Lindsay PE, Kwan JY , et al. Correlation of dosimetric and clinical factors with the development of esophagitis and radiation pneumonitis in patients with limited-stage small-cell lung carcinoma[J]. Clin Lung Cancer, 2015,16(3):216-220. DOI: 10.1016/j.cllc.2014.11.008.
|
[15] |
Hoover DA, Reid RH, Wong E , et al. SPECT-based functional lung imaging for the prediction of radiation pneumonitis: a clinical and dosimetric correlation[J]. J Med Imaging Radiat Oncol, 2014,58(2):214-222. DOI: 10.1111/1754-9485.12145.
|
[16] |
Kim TH, Cho KH, Pyo HR , et al. Dose-volumetric parameters for predicting severe radiation pneumonitis after three-dimensional conformal radiation therapy for lung cancer[J]. Radiology, 2005,235(1):208-215. DOI: 10.1148/radiol.2351040248.
|
[17] |
Kong FM, Hayman JA, Griffith KA , et al. Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis[J]. Int J Radiat Oncol Biol Phys, 2006,65(4):1075-1086. DOI: 10.1016/j.ijrobp.2006.01.051.
|
[18] |
Kharofa J, Cohen EP, Tomic R , et al. Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2012,84(1):238-243. DOI: 10.1016/j.ijrobp.2011.11.013.
|
[19] |
Zhao Y, Chen L, Zhang S , et al. Predictive factors for acute radiation pneumonitis in postoperative intensity modulated radiation therapy and volumetric modulated arc therapy of esophageal cancer[J]. Thorac Cancer, 2015,6(1):49-57. DOI: 10.1111/1759-7714.12142.
|
[20] |
Alharbi M, Janssen S, Golpon H , et al. Temporal and spatial dose distribution of radiation pneumonitis after concurrent radiochemotherapy in stage Ⅲ non-small cell cancer patients[J]. Radiat Oncol, 2017,12(1):165. DOI: 10.1186/s13014-017-0898-5.
|
[21] |
Meng Y, Yang H, Wang W , et al. Excluding PTV from lung volume may better predict radiation pneumonitis for intensity modulated radiation therapy in lung cancer patients[J]. Radiat Oncol, 2019,14(1):7. DOI: 10.1186/s13014-018-1204-x.
|
[22] |
Zhuang H, Yuan Z, Chang JY , et al. Radiation pneumonitis in patients with non-small-cell lung cancer treated with erlotinib concurrent with thoracic radiotherapy[J]. J Thorac Oncol, 2014,9(6):882-885. DOI: 10.1097/jto.0000000000000126.
|
[23] |
Chiang CL, Chen YW, Wu MH , et al. Radiation recall pneumonitis induced by epidermal growth factor receptor-tyrosine kinase inhibitor in patients with advanced nonsmall-cell lung cancer[J]. J Chin Med Assoc, 2016,79(5):248-255. DOI: 10.1016/j.jcma.2016.01.008.
|
[24] |
Shaverdian N, Lisberg AE, Bornazyan K , et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial[J]. Lancet Oncol, 2017,18(7):895-903. DOI: 10.1016/s1470-2045(17)30380-7.
|
[25] |
Antonia SJ, Villegas A, Daniel D , et al. Durvalumab after chemoradiotherapy in stage Ⅲ non-small-cell lung cancer[J]. N Engl J Med, 2017,377(20):1919-1929. DOI: 10.1056/NEJMoa1709937.
|
[26] |
Wang S, Campbell J, Stenmark MH , et al. Plasma levels of IL-8 and TGF-beta1 predict radiation-induced lung toxicity in non-small cell lung cancer: a validation study[J]. Int J Radiat Oncol Biol Phys, 2017,98(3):615-621. DOI: 10.1016/j.ijrobp.2017.03.011.
|
[27] |
Andreassen CN, Schack LM, Laursen LV , et al. Radiogenomics-current status, challenges and future directions[J]. Cancer Lett, 2016,382(1):127-136. DOI: 10.1016/j.canlet.2016.01.035.
|
[28] |
Tucker SL, Li M, Xu T , et al. Incorporating single-nucleotide polymorphisms into the Lyman model to improve prediction of radiation pneumonitis[J]. Int J Radiat Oncol Biol Phys, 2013,85(1):251-257. DOI: 10.1016/j.ijrobp.2012.02.021.
|
[29] |
Saito T, Nakayama H, Yamada T , et al. Is severe emphysema, as defined by quantitative CT measurement, a negative risk factor of radiation fibrosis?[J]. Br J Radiol, 2018,91(1087):20170921. DOI: 10.1259/bjr.20170921.
|
[30] |
Abdulla S, Salavati A, Saboury B , et al. Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study[J]. Eur J Nucl Med Mol Imaging, 2014,41(2):350-356. DOI: 10.1007/s00259-013-2579-4.
doi: 10.1007/s00259-013-2579-4
|
[31] |
Anthony GJ, Cunliffe A, Castillo R , et al. Incorporation of pre-therapy 18F-FDG uptake data with CT texture features into a radiomics model for radiation pneumonitis diagnosis [J]. Med Phys, 2017,44(7):3686-3694. DOI: 10.1002/mp.12282.
|
[32] |
Farr KP, Kramer S, Khalil AA , et al. Role of perfusion SPECT in prediction and measurement of pulmonary complications after radiotherapy for lung cancer[J]. Eur J Nucl Med Mol Imaging, 2015,42(8):1315-1324. DOI: 10.1007/s00259-015-3052-3.
|
[33] |
Eslick EM, Stevens MJ, Bailey DL . SPECT V/Q in lung cancer radiotherapy planning[J]. Semin Nucl Med, 2019,49(1):31-36. DOI: 10.1053/j.semnuclmed.2018.10.009.
|
[34] |
Vinogradskiy Y, Schubert L, Diot Q , et al. Regional lung function profiles of stage Ⅰ and Ⅲ lung cancer patients: an evaluation for functional avoidance radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2016,95(4):1273-1280. DOI: 10.1016/j.ijrobp.2016.02.058.
|
[35] |
Faught AM, Miyasaka Y, Kadoya N , et al. Evaluating the toxicity reduction with computed tomographic ventilation functional avoidance radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2017,99(2):325-333. DOI: 10.1016/j.ijrobp.2017.04.024.
|
[36] |
Krafft SP, Rao A, Stingo F , et al. The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis[J]. Med Phys, 2018,45(11):5317-5324. DOI: 10.1002/mp.13150.
|