[1] |
Venuti A, Lohse S, Tommasino M, et al. Cross-talk of cutaneous beta human papillomaviruses and the immune system: determinants of disease penetrance[J]. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1773): 20180287. DOI: 10.1098/rstb.2018.0287.
|
[2] |
Sichero L, Rollison DE, Amorrortu RP, et al. Beta human papillomavirus and associated diseases[J]. Acta Cytol, 2019, 63(2): 100-108. DOI: 10.1159/000492659.
|
[3] |
Rollison DE, Viarisio D, Amorrortu RP, et al. An emerging issue in oncogenic virology: the role of beta HPV types in development of cutaneous squamous cell carcinoma[J]. J Virol, 2019, 93(7). pii: e01003-18. DOI: 10.1128/jvi.01003-18.
|
[4] |
Marx B, Miller-Lazic D, Doorbar J, et al. HPV8-E6 interferes with syntenin-2 expression through deregulation of differentiation, methylation and phosphatidylinositidekinase dependent mechanisms[J]. Front Microbiol, 2017, 8: 1724. DOI: 10.3389/fmicb.2017.01724.
|
[5] |
Iannacone MR, Gheit T, Pfister H, et al. Case-control study of genus-beta human papillomaviruses in plucked eyebrow hairs and cutaneous squamous cell carcinoma[J]. Int J Cancer, 2014, 134(9): 2231-2244. DOI: 10.1002/ijc.28552.
|
[6] |
Tommasino M. The biology of beta human papillomaviruses[J]. Virus Res, 2017, 231: 128-138. DOI: 10.1016/j.virusres.2016.11.013.
|
[7] |
Brancaccio RN, Robitaille A, Dutta S, et al. Generation of a novel next-generation sequencing-based method for the isolation of new human papillomavirus types[J]. Virology, 2018, 520: 1-10. DOI: 10.1016/j.virol.2018.04.017.
|
[8] |
Chahoud J, Semaan A, Chen Y, et al. Association between β-genus human papillomavirus and cutaneous squamous cell carcinoma in immunocompetent individuals-a meta-analysis[J]. JAMA Dermatol, 2016, 152(12): 1354-1364. DOI: 10.1001/jamadermatol.2015.4530.
|
[9] |
Waldman A, Schmults C. Cutaneous squamous cell carcinoma[J]. Hematol Oncol Clin North Am, 2019, 33(1): 1-12. DOI: 10.1016/j.hoc.2018.08.001.
|
[10] |
Hampras SS, Rollison DE, Giuliano AR, et al. Prevalence and concordance of cutaneous beta human papillomavirus infection at mucosal and cutaneous sites[J]. J Infect Dis, 2017, 216(1): 92-96. DOI: 10.1093/infdis/jix245.
|
[11] |
Genders RE, Osinga JAJ, Tromp EE, et al. Metastasis risk of cutaneous squamous cell carcinoma in organ transplant recipients and immunocompetent patients[J]. Acta Derm Venereol, 2018, 98(6): 551-555. DOI: 10.2340/00015555-2901.
|
[12] |
Chockalingam R, Downing C, Tyring SK. Cutaneous squamous cell carcinomas in organ transplant recipients[J]. J Clin Med, 2015, 4(6): 1229-1239. DOI: 10.3390/jcm4061229.
|
[13] |
Bouwes Bavinck JN, Feltkamp MCW, Green AC, et al. Human papillomavirus and posttransplantation cutaneous squamous cell carcinoma: a multicenter, prospective cohort study[J]. Am J Transplant, 2018, 18(5): 1220-1230. DOI: 10.1111/ajt.14537.
|
[14] |
Iannacone MR, Gheit T, Waterboer T, et al. Case-control study of cutaneous human papillomavirus infection in Basal cell carcinoma of the skin[J]. J Invest Dermatol, 2013, 133(6): 1512-1520. DOI: 10.1038/jid.2012.478.
|
[15] |
Meyers JM, Grace M, Uberoi A, et al. Inhibition of TGF-β and NOTCH signaling by cutaneous papillomaviruses[J]. Front Microbiol, 2018, 9: 389. DOI: 10.3389/fmicb.2018.00389.
|
[16] |
Viarisio D, Müller-Decker K, Accardi R, et al. Beta HPV38 oncoproteins act with a hit-and-run mechanism in ultraviolet radiation-induced skin carcinogenesis in mice[J]. PLOS Pathog, 2018, 14(1): e1006783. DOI: 10.1371/journal.ppat.1006783.
|
[17] |
Gheit T. Mucosal and cutaneous human papillomavirus infections and cancer biology[J]. Front Oncol, 2019, 9: 355. DOI: 10.3389/fonc.2019.00355.
|
[18] |
Yeo-Teh NSL, Ito Y, Jha S. High-risk human papillomaviral oncogenes E6 and E7 target key cellular pathways to achieve oncogenesis[J]. Int J Mol Sci, 2018, 19(6). pii: E1706. DOI: 10.3390/ijms19061706.
|
[19] |
Martinez-Zapien D, Ruiz FX, Poirson J, et al. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53[J]. Nature, 2016, 529(7587): 541-545. DOI: 10.1038/nature16481.
|
[20] |
Steels A, Vannevel L, Zwaenepoel O, et al. Nb-induced stabilisation of p53 in HPV-infected cells[J]. Sci Rep, 2019, 9(1): 12680. DOI: 10.1038/s41598-019-49061-9.
|
[21] |
Nyman PE, Buehler D, Lambert PF. Loss of function of canonical notch signaling drives head and neck carcinogenesis[J]. Clin Cancer Res, 2018, 24(24): 6308-6318. DOI: 10.1158/1078-0432.CCR-17-3535.
|
[22] |
Estêvo D, Costa NR, Gil da Costa RM, et al. Hallmarks of HPV carcinogenesis: the role of E6, E7 and E5 oncoproteins in cellular malignancy[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(2): 153-162. DOI: 10.1016/j.bbagrm.2019.01.001.
|
[23] |
Szalmás A, Tomai'c V, Basukala O, et al. The PTPN14 tumor suppressor is a degradation target of human papillomavirus E7[J]. J Virol, 2017, 91(7). pii: e00057-17. DOI: 10.1128/JVI.00057-17.
|
[24] |
Akgül B, Kirschberg M, Storey A, et al. Human papillomavirus type 8 oncoproteins E6 and E7 cooperate in downregulation of the cellular checkpoint kinase-1[J]. Int J Cancer, 2019, 145(3): 797-806. DOI: 10.1002/ijc.32223.
|
[25] |
Heuser S, Hufbauer M, Steiger J, et al. The fibronectin/α3β1 integrin axis serves as molecular basis for keratinocyte invasion induced by βHPV[J]. Oncogene, 2016, 35(34): 4529-4539. DOI: 10.1038/onc.2015.512.
|
[26] |
Hufbauer M, Cooke J, van der Horst GT, et al. Human papillomavirus mediated inhibition of DNA damage sensing and repair drives skin carcinogenesis[J]. Mol Cancer, 2015, 14: 183. DOI: 10.1186/s12943-015-0453-7.
|
[27] |
Tommasino M. HPV and skin carcinogenesis[J]. Papillomavirus Res, 2019, 7: 129-131. DOI: 10.1016/j.pvr.2019.04.003.
|
[28] |
Pacini L, Ceraolo MG, Venuti A, et al. UV radiation activates toll-like receptor 9 expression in primary human keratinocytes, an event inhibited by human papillomavirus 38 E6 and E7 oncoproteins[J]. J Virol, 2017, 91(19). pii: e01123-17. DOI: 10.1128/JVI.01123-17.
|
[29] |
Dong W, Arpin C, Accardi R, et al. Loss of p53 or p73 in human papillomavirus type 38 E6 and E7 transgenic mice partially restores the UV-activated cell cycle checkpoints[J]. Oncogene, 2008, 27(20): 2923-2928. DOI: 10.1038/sj.onc.1210944.
|
[30] |
Pacini L, Savini C, Ghittoni R, et al. Downregulation of toll-like receptor 9 expression by beta human papillomavirus 38 and implications for cell cycle control[J]. J Virol, 2015, 89(22): 11396-11405. DOI: 10.1128/JVI.02151-15.
|