国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (10): 621-627.doi: 10.3760/cma.j.cn371439-20250123-00106

• 论著 • 上一篇    下一篇

术前弥散加权成像直方图参数对早期直肠癌浸润深度的诊断价值

吉盛超, 金晓凤, 叶黛西, 陆泽华, 宣璐璐, 耿承军()   

  1. 中国人民解放军联勤保障部队第九〇四医院放射科,无锡 214044
  • 收稿日期:2025-01-23 修回日期:2025-07-31 出版日期:2025-10-08 发布日期:2025-11-12
  • 通讯作者: 耿承军 E-mail:hfgcj@hotmail.com
  • 基金资助:
    无锡市卫生健康委员会科研项目(Q202361)

Diagnostic value of preoperative diffusion weighted imaging histogram parameters in the depth of invasion of early rectal cancer

Ji Shengchao, Jin Xiaofeng, Ye Daixi, Lu Zehua, Xuan Lulu, Geng Chengjun()   

  1. Department of Radiology, 904th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Wuxi 214044, China
  • Received:2025-01-23 Revised:2025-07-31 Online:2025-10-08 Published:2025-11-12
  • Contact: Geng Chengjun E-mail:hfgcj@hotmail.com
  • Supported by:
    Scientific Research Project of Wuxi Municipal Health Commission of China(Q202361)

摘要:

目的 探究术前MRI弥散加权成像(DWI)直方图参数对早期直肠癌浸润深度的诊断价值。 方法 选择2020年8月—2024年8月于中国人民解放军联勤保障部队第九〇四医院就诊的早期直肠癌患者180例为研究对象,根据肿瘤浸润深度分为黏膜内癌组(n=102)和黏膜下癌组(n=78)。比较两组患者一般资料。采用组内相关系数(ICC)分析2名放射科医师提取DWI直方图参数的一致性,并比较两组参数差异。利用受试者操作特征(ROC)曲线分析各参数对肿瘤浸润深度的预测价值。多因素logistic回归分析浸润深度的独立影响因素,并构建预测模型,绘制ROC曲线分析模型对肿瘤浸润深度的预测价值,并采用Hosmer-Lemeshow检验分析模型的拟合优度。 结果 黏膜内癌组与黏膜下癌组患者的年龄(t=8.15,P<0.001)、肿瘤最大径(χ2=29.29,P<0.001)、内镜分型(χ2=20.96,P<0.001)、组织分型(χ2=24.93,P<0.001)和分化程度(χ2=73.35,P<0.001)差异均有统计学意义。DWI直方图参数中均值,方差,偏度,峰度,第1、10、50、90、99百分位数一致性良好(均ICC>0.75)。黏膜内癌组与黏膜下癌组DWI直方图参数中均值(t=5.69,P<0.001)、方差(t=9.75,P<0.001)、偏度(t=10.88,P<0.001)、峰度(t=10.06,P<0.001)、第1百分位数(t=3.43,P<0.001)、第10百分位数(t=3.59,P<0.001)、第50百分位数(t=9.97,P<0.001)、第90百分位数(t=4.63,P<0.001)、第99百分位数(t=2.44,P=0.016)差异均有统计学意义。ROC曲线分析显示,DWI直方图参数中均值[曲线下面积(AUC)=0.77]、方差(AUC=0.88)、偏度(AUC=0.88)、峰度(AUC=0.78)、第50百分位数(AUC=0.86)、第90百分位数(AUC=0.82)对黏膜下癌均具有一定的诊断价值。多因素分析显示,年龄(OR=9.98,95%CI为1.10~90.70,P=0.041)、肿瘤最大径(OR=7.36,95%CI为1.08~50.23,P=0.042)、分化程度(OR=19.88,95%CI为1.21~327.92,P=0.037)、方差(OR=16.24,95%CI为2.26~116.68,P=0.006)、偏度(OR=21.13,95%CI为2.80~59.61,P=0.003)、第1百分位数(OR=9.78,95%CI为1.17~81.76,P=0.035)均是早期直肠癌患者肿瘤浸润深度的独立预测因素。基于上述指标构建的预测模型为logit(P)=1.51+2.30×年龄+2.00×肿瘤最大径+2.99×分化程度+2.79×方差+3.05×偏度+2.28×第1百分位数。ROC曲线分析显示,预测模型判断早期直肠癌患者发生黏膜下癌的AUC为0.97(95%CI为0.95~0.99),敏感性为0.95,特异性为0.88。Hosmer-Lemeshow检验结果显示,模型的拟合优度理想(P=0.823)。 结论 年龄、肿瘤最大径、分化程度、方差、偏度、第1百分位数均是早期直肠癌患者肿瘤浸润深度的独立预测因素,据此构建的预测模型可有效预测早期直肠癌患者发生黏膜下癌的风险。

关键词: 直肠肿瘤, 肿瘤浸润, 图像处理,计算机辅助, 弥散加权成像

Abstract:

Objective To explore the diagnostic value of preoperative diffusion weighted imaging (DWI) histogram parameters in the depth of invasion of early rectal cancer. Methods A total of 180 patients with early rectal cancer admitted to 904th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army from August 2020 to August 2024 were selected as the study objects. Patients were divided into intramucosal cancer group (n=102) and submucosal cancer group (n=78) according to the depth of tumor invasion. The general data of the two groups were compared. The intraclass correlation coefficient (ICC) was used to analyze the consistency of DWI histogram parameters extracted by the two radiologists, and the differences between the two groups were compared. Receiver operator characteristic (ROC) curve was used to analyze the predictive value of each parameter to the depth of tumor invasion. Multivariate logistic regression was used to analyze the independent influencing factors of invasion depth, and a predictive model was constructed. The ROC curve was drawn to analyze the predictive value of the model for tumor invasion depth, and the Hosmer-Lemeshow test was used to analyze the goodness of fit of the model. Results There were statistically significant differences in age (t=8.15, P<0.001), maximum tumor diameter (χ2=29.29, P<0.001), endoscopic type (χ2=20.96, P<0.001), histological type (χ2=24.93, P<0.001) and differentiation degree (χ2=73.35, P<0.001) between intramucosal cancer group and submucosal cancer group. The mean, variance, skewness, kurtosis, the 1st, 10th, 50th, 90th, and 99th percentiles of the histogram parameters of DWI had good consistency (all ICC>0.75). There were statistically significant differences in the mean (t=5.69, P<0.001), variance (t=9.75, P<0.001), skewness (t=10.88, P<0.001), kurtosis (t=10.06, P<0.001), the 1st percentile (t=3.43, P<0.001), 10th percentile (t=3.59, P<0.001), 50th percentile (t=9.97, P<0.001), 90th percentile (t=4.63, P<0.001), and 99th percentile (t=2.44, P=0.016) of the DWI histogram parameters between the intramucosal cancer group and the submucosal cancer group. ROC curve analysis results showed that mean [area under the curve (AUC)=0.77], variance (AUC=0.88), skewness (AUC=0.88), kurtosis (AUC=0.78), 50th percentile (AUC=0.86) and 90th percentile (AUC=0.82) had certain diagnostic value for submucous cancer. Multivariate analysis showed that age (OR=9.98, 95%CI: 1.10-90.70, P=0.041), maximum tumor diameter (OR=7.36, 95%CI: 1.08-50.23, P=0.042), and differentiation degree (OR=19.88, 95%CI: 1.21-327.92, P=0.037), variance (OR=16.24, 95%CI: 2.26-116.68, P=0.006), skewness (OR=21.13, 95%CI: 2.80-59.61, P=0.003), 1st percentile (OR=9.78, 95%CI: 1.17-81.76, P=0.035) were independent factors in predicting tumor invasion depth in patients with early rectal cancer. The predictive model based on the above indicators was logit(P)=1.51+2.30×age+2.00×maximum tumor diameter+2.99×differentiation degree+2.79×variance+3.05×skewness+ 2.28×the 1st percentile. ROC curve analysis showed that the predictive model had an AUC of 0.97 (95%CI: 0.95-0.99) for judging the occurrence of submucosal cancer in patients with early rectal cancer, the sensitivity was 0.95, and the specificity was 0.88. The Hosmer-Lemeshow test results showed that the goodness of fit of the model was ideal (P=0.823). Conclusions Age, maximum tumor diameter, differentiation degree, variance, skewness, and the 1st percentile are independent factors in predicting tumor invasion depth in patients with early rectal cancer. The predictive model constructed based on these factors can effectively predict the risk of submucosal cancer in patients with early rectal cancer.

Key words: Rectal neoplasms, Neoplasm invasiveness, Image processing, computer-assisted, Diffusion weighted imaging