国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (11): 723-727.doi: 10.3760/cma.j.cn371439-20240618-00122
收稿日期:
2024-06-18
修回日期:
2024-07-03
出版日期:
2024-11-08
发布日期:
2024-12-26
通讯作者:
余进洪
E-mail:yujinhong@nsmc.edu.cn
基金资助:
Received:
2024-06-18
Revised:
2024-07-03
Online:
2024-11-08
Published:
2024-12-26
Contact:
Yu Jinhong
E-mail:yujinhong@nsmc.edu.cn
Supported by:
摘要:
肝癌常用的治疗方法有消融治疗、手术切除、肝移植等,随着超声治疗技术及分子影像技术的进一步发展,超声靶向微泡破坏(UTMD)技术成为了一种新兴肿瘤诊治手段,超声微泡不仅能诊断显影,而且还可作为一种新型的药物或基因的传递系统,实现通过靶向传递药物或基因来治疗疾病。在肝癌的治疗研究中,该技术具有巨大潜力,探讨UTMD在肝癌治疗中的机制、应用以及相关问题,可为肝癌患者带来新的治疗选择。
蒋琼, 余进洪. 超声靶向微泡破坏技术在肝癌治疗中的应用研究进展[J]. 国际肿瘤学杂志, 2024, 51(11): 723-727.
Jiang Qiong, Yu Jinhong. Research progress on the application of ultrasound-targeted microbubble destruction technology in the treatment of liver cancer[J]. Journal of International Oncology, 2024, 51(11): 723-727.
[1] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. |
[2] | Anwanwan D, Singh SK, Singh S, et al. Challenges in liver cancer and possible treatment approaches[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(1): 188314. DOI: 10.1016/j.bbcan.2019.188314. |
[3] | Han F, Wang Y, Dong X, et al. Clinical sonochemotherapy of inoperable pancreatic cancer using diagnostic ultrasound and microbubbles: a multicentre, open-label, randomised, controlled trial[J]. Eur Radiol, 2024, 34(3): 1481-1492. DOI: 10.1007/s00330-023-10210-4. |
[4] | Moore-Palhares D, Dasgupta A, Saifuddin M, et al. Radiation enhancement using focussed ultrasound-stimulated microbubbles for breast cancer: a phase 1 clinical trial[J]. PLoS Med, 2024, 21(5): e1004408. DOI: 10.1371/journal.pmed.1004408. |
[5] | Zahiri M, Taghavi S, Abnous K, et al. Theranostic nanobubbles towards smart nanomedicines[J]. J Control Release, 2021, 339: 164-194. DOI: 10.1016/j.jconrel.2021.09.032. |
[6] |
Li J, Xi A, Qiao H, et al. Ultrasound-mediated diagnostic imaging and advanced treatment with multifunctional micro/nanobubbles[J]. Cancer Lett, 2020, 475: 92-98. DOI: 10.1016/j.canlet.2020.01.028.
pmid: 32032678 |
[7] | Erlichman DB, Weiss A, Koenigsberg M, et al. Contrast enhanced ultrasound: a review of radiology applications[J]. Clin Imaging, 2020, 60(2): 209-215. DOI: 10.1016/j.clinimag.2019.12.013. |
[8] | Kancheva M, Aronson L, Pattilachan T, et al. Bubble-based drug delivery systems: next-generation diagnosis to therapy[J]. J Funct Biomater, 2023, 14(7): 373. DOI: 10.3390/jfb14070373. |
[9] | Jose AD, Wu Z, Thakur SS. A comprehensive update of micro-and nanobubbles as theranostics in oncology[J]. Eur J Pharm Biopharm, 2022, 172: 123-133. DOI: 10.1016/j.ejpb.2022.02.008. |
[10] | Myers JZ, Navarro-Becerra JA, Borden MA. Nanobubbles are non-echogenic for fundamental-mode contrast-enhanced ultrasound imaging[J]. Bioconjug Chem, 2022, 33(6): 1106-1113. DOI: 10.1021/acs.bioconjchem.2c00155. |
[11] | Sitta J, Howard CM. Applications of ultrasound-mediated drug delivery and gene therapy[J]. Int J Mol Sci, 2021, 22(21): 11491. DOI: 10.3390/ijms222111491. |
[12] | Sun S, Wang P, Sun S, et al. Applications of micro/nanotechnology in ultrasound-based drug delivery and therapy for tumor[J]. Curr Med Chem, 2021, 28(3): 525-547. DOI: 10.2174/09298673276 66200212100257. |
[13] | Sasaki N, Bos C, Escoffre JM, et al. Development of a tumor tissue-mimicking model with endothelial cell layer and collagen gel for evaluating drug penetration[J]. Int J Pharm, 2015, 482(1/2): 118-122. DOI: 10.1016/j.ijpharm.2015.01.039. |
[14] | Johansen ML, Perera R, Abenojar E, et al. Ultrasound-based molecular imaging of tumors with PTPmu biomarker-targeted nanobubble contrast agents[J]. Int J Mol Sci, 2021, 22(4): 1983. DOI: 10.3390/ijms22041983. |
[15] | Zhou H, Liu H, Zhang Y, et al. "PFH/AGM-CBA/HSV-TK/LIPOSOME-Affibody": novel targeted nano ultrasound contrast agents for ultrasound imaging and inhibited the growth of ErbB2-overexpressing gastric cancer cells[J]. Drug Des Devel Ther, 2022, 16: 1515-1530. DOI: 10.2147/DDDT.S351623. |
[16] |
Omata D, Munakata L, Maruyama K, et al. Enhanced vascular permeability by microbubbles and ultrasound in drug delivery[J]. Biol Pharm Bull, 2021, 44(10): 1391-1398. DOI: 10.1248/bpb.b21-00453.
pmid: 34602547 |
[17] | Han Y, Sun J, Wei H, et al. Ultrasound-targeted microbubble destruction: modulation in the tumor microenvironment and application in tumor immunotherapy[J]. Front Immunol, 2022, 13: 937344. DOI: 10.3389/fimmu.2022.937344. |
[18] | Hu Y, Wei J, Shen Y, et al. Barrier-breaking effects of ultrasonic cavitation for drug delivery and biomarker release[J]. Ultrason Sonochem, 2023, 94: 106346. DOI: 10.1016/j.ultsonch.2023.106346. |
[19] |
Zhou LQ, Li P, Cui XW, et al. Ultrasound nanotheranostics in fighting cancer: advances and prospects[J]. Cancer Lett, 2020, 470: 204-219. DOI: 10.1016/j.canlet.2019.11.034.
pmid: 31790760 |
[20] | Xiang X, Pang H, Ma T, et al. Ultrasound targeted microbubble destruction combined with Fe-MOF based bio-/enzyme-mimics nanoparticles for treating of cancer[J]. J Nanobiotechnology, 2021, 19(1): 92. DOI: 10.1186/s12951-021-00835-2. |
[21] |
Luo T, Bai L, Zhang Y, et al. Optimal treatment occasion for ultrasound stimulated microbubbles in promoting gemcitabine delivery to VX2 tumors[J]. Drug Deliv, 2022, 29(1): 2796-2804. DOI: 10.1080/10717544.2022.2115163.
pmid: 36047064 |
[22] |
Wu Y, Sun T, Tang J, et al. Ultrasound-targeted microbubble destruction enhances the antitumor efficacy of doxorubicin in a mouse hepatocellular carcinoma model[J]. Ultrasound Med Biol, 2020, 46(3): 679-689. DOI: 10.1016/j.ultrasmedbio.2019.09.017.
pmid: 31882167 |
[23] |
Haram M, Hansen R, Bouget D, et al. Treatment of liver metastases with focused ultrasound and microbubbles in patients with colorectal cancer receiving chemotherapy[J]. Ultrasound Med Biol, 2023, 49(9): 2081-2088. DOI: 10.1016/j.ultrasmedbio.2023.05.013.
pmid: 37336691 |
[24] |
Marshall E. Gene therapy death prompts review of adenovirus vector[J]. Science, 1999, 286(5448): 2244-2245. DOI: 10.1126/science.286.5448.2244.
pmid: 10636774 |
[25] | Pan Y, Wei M, Gong T. Ultrasound microbubble-mediated delivery of ANLN silencing-repressed EZH2 expression alleviates cervical cancer progression[J]. Tissue Cell, 2022, 77: 101843. DOI: 10.1016/j.tice.2022.101843. |
[26] | Zhou X, Liu H, Pang Y, et al. UTMD-mediated delivery of miR-21-5p inhibitor suppresses the development of lung cancer[J]. Tissue Cell, 2022, 74: 101719. DOI: 10.1016/j.tice.2021.101719. |
[27] |
Wang H, Hu Z, Sukumar UK, et al. Ultrasound-guided microbubble-mediated locoregional delivery of multiple microRNAs improves chemotherapy in hepatocellular carcinoma[J]. Nanotheranostics, 2022, 6(1): 62-78. DOI: 10.7150/ntno.63320.
pmid: 34976581 |
[28] | Wu H, Xie D, Yang Y, et al. Ultrasound-targeted microbubble destruction-mediated miR-206 overexpression promotes apoptosis and inhibits metastasis of hepatocellular carcinoma cells via targeting PPIB[J]. Technol Cancer Res Treat, 2020, 19: 1533033820959355. DOI: 10.1177/1533033820959355. |
[29] | Anderson CD, Arthur JA, Zhang Y, et al. Non-viral in vivo cytidine base editing in hepatocytes using focused ultrasound targeted microbubbles[J]. Mol Ther Nucleic Acids, 2023, 33: 733-737. DOI: 10.1016/j.omtn.2023.07.032. |
[30] | Kumar SU, Telichko AV, Wang H, et al. Acoustically driven microbubbles enable targeted delivery of microRNA-loaded nanoparticles to spontaneous hepatocellular neoplasia in canines[J]. Adv Ther (Weinh), 2020, 3(12): 2000120. DOI: 10.1002/adtp.202000120. |
[31] |
Sharma D, McNabb E, Law N, et al. Ultrasound-stimulated microbubbles enhancement of fractionated radiation for tumor treatment[J]. BMC Cancer, 2023, 23(1): 693. DOI: 10.1186/s12885-023-10981-5.
pmid: 37488490 |
[32] | Yang Y, Dang Z, Lu P, et al. Impact of pathological response after preoperative transcatheter arterial chemoembolization (TACE) on incidences of microvascular invasion and early tumor recurrence in hepatocellular carcinoma: a multicenter propensity score matching analysis[J]. Hepatobiliary Surg Nutr, 2022, 11(3): 386-399. DOI: 10.21037/hbsn-20-700. |
[33] |
Morse MA, Sun W, Kim R, et al. The role of angiogenesis in hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25(3): 912-920. DOI: 10.1158/1078-0432.CCR-18-1254.
pmid: 30274981 |
[34] |
Kim D, Lee JH, Moon H, et al. Development and evaluation of an ultrasound-triggered microbubble combined transarterial chemoembolization (TACE) formulation on rabbit VX2 liver cancer model[J]. Theranostics, 2021, 11(1): 79-92. DOI: 10.7150/thno.45348.
pmid: 33391462 |
[35] | Sultan LR, D'Souza JC, Karmacharya MB, et al. Dose-dependent effects of ultrasound therapy on hepatocellular carcinoma[C]// 2020 IEEE International Ultrasonics Symposium (IUS). Las Vegas, NV, USA: IEEE, 2020: 1-4. DOI: 10.1109/IUS46767.2020.9251660. |
[36] |
Eisenbrey JR, Forsberg F, Wessner CE, et al. US-triggered microbubble destruction for augmenting hepatocellular carcinoma response to transarterial radioembolization: a randomized pilot clinical trial[J]. Radiology, 2021, 298(2): 450-457. DOI: 10.1148/radiol.2020202321.
pmid: 33320067 |
[37] | Xiao S, Hu Z, He Y, et al. Enhancement effect of microbubble-enhanced ultrasound in microwave ablation in rabbit VX2 liver tumors[J]. Biomed Res Int, 2020, 2020: 3050148. DOI: 10.1155/2020/3050148. |
[38] | 胡志文, 萧淑宜, 格桑卓玛, 等. 微泡超声空化在增强微波消融对肝脏肿瘤的热消融效应中的价值[J]. 广州医药, 2021, 52(1): 43-48. DOI: 10.3969/j.issn.1000-8535.2021.01.009. |
[39] | 益磋, 王亚辉, 陈重, 等. 超声空化促进乙醇消融兔肝脏的实验研究[J]. 中华医学超声杂志 (电子版), 2017, 14(12): 948-954. DOI: 10.3877/cma.j.issn.1672-6448.2017.12.014. |
[1] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[2] | 彭琴, 蔡玉婷, 王伟. KPNA2在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 181-185. |
[3] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹. 结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[4] | 张冬茜, 张海光, 张晓茹, 郑璇, 韩素桂, 李颖, 郝春海. miR-9和miR-195-3p在原发性肝癌诊断中的应用及其在介入治疗前后的变化[J]. 国际肿瘤学杂志, 2024, 51(10): 627-631. |
[5] | 向玉玲, 谭佳杰, 熊远果, 赵丽蓉, 黎晨, 张洪. 脱水淫羊藿素对肝癌细胞增殖、迁移和凋亡的影响[J]. 国际肿瘤学杂志, 2023, 50(9): 513-519. |
[6] | 李佳璇, 封颖璐. 糖皮质激素受体在肝癌细胞生长中的作用机制[J]. 国际肿瘤学杂志, 2023, 50(4): 241-243. |
[7] | 和婷, 王希, 张惠中, 刘昕阳, 王会平, 董轲. 血清TIM-3对肝癌患者诊断价值的研究[J]. 国际肿瘤学杂志, 2022, 49(9): 537-542. |
[8] | 张玉敏, 赵现伟, 何前进, 陈杰能. 超声造影联合血清CXCL8、CXCR2在原发性肝癌经导管动脉化疗栓塞术后疗效评估中的价值分析[J]. 国际肿瘤学杂志, 2022, 49(10): 592-596. |
[9] | 狄伟华, 赵雪梅. DNA损伤修复在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(10): 635-638. |
[10] | 杜佳航, 陈栋, 陈耀庭. 三氧化二砷抗肝癌机制及其在肝癌治疗中的研究[J]. 国际肿瘤学杂志, 2021, 48(9): 572-. |
[11] | 韩保俊. 组蛋白乙酰转移酶P300在肝癌组织中的表达及其临床意义[J]. 国际肿瘤学杂志, 2021, 48(7): 415-419. |
[12] | 张玉元, 李臻, 詹鹏超, 李鑫, 叶书文, 王彩鸿, 刘杨. 肝癌标志物研究进展[J]. 国际肿瘤学杂志, 2021, 48(4): 241-245. |
[13] | 熊琳, 张修云, 张小余, 黎越, 徐细明. IWR-1-endo通过抑制Wnt通路影响肝癌细胞的迁移和增殖[J]. 国际肿瘤学杂志, 2021, 48(12): 711-715. |
[14] | 刘俊国, 张金卷, 王毅军. ALPPS中肝脏离断技术变异的临床应用进展[J]. 国际肿瘤学杂志, 2020, 47(8): 492-495. |
[15] | 张伟, 殷海涛, 周冲, 李向阳, 郭林. 甲磺酸阿帕替尼联合卡瑞利珠单抗治疗原发性肝癌伴肺转移一例[J]. 国际肿瘤学杂志, 2020, 47(8): 510-512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||