
国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (2): 109-112.doi: 10.3760/cma.j.cn371439-20200629-00021
收稿日期:2020-06-29
									
				
											修回日期:2020-07-11
									
				
									
				
											出版日期:2021-02-08
									
				
											发布日期:2021-03-11
									
			通讯作者:
					马飞
											E-mail:drmafei@126.com
												基金资助:Received:2020-06-29
									
				
											Revised:2020-07-11
									
				
									
				
											Online:2021-02-08
									
				
											Published:2021-03-11
									
			Contact:
					Ma Fei   
											E-mail:drmafei@126.com
												Supported by:摘要:
乳腺癌筛查是对无症状人群采取经济、有效和简便的检查措施进行筛查,实现早发现、早诊断和早治疗的目标。现有的筛查方法如乳腺X线和超声检查对早期病变敏感性较差,无法评估无症状人群乳腺癌发病风险。乳腺癌易感基因、DNA甲基化、微小RNA和循环肿瘤细胞作为乳腺癌筛查和早期诊断的血液生物学标志物,可以识别乳腺癌高危人群,提高乳腺癌的早期诊断率。
黎立喜, 马飞. 乳腺癌筛查和早期诊断的血液生物学标志物[J]. 国际肿瘤学杂志, 2021, 48(2): 109-112.
Li Lixi, Ma Fei. Blood biomarkers for breast cancer screening and early diagnosis[J]. Journal of International Oncology, 2021, 48(2): 109-112.
| [1] |  
											  Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424. DOI: 10.3322/caac.21492. 
											 												 doi: 10.3322/caac.21492 pmid: 30207593  | 
										
| [2] |  
											  Li X, Xu Y, Zhang L. Serum CA153 as biomarker for cancer and noncancer diseases[J]. Prog Mol Biol Transl Sci, 2019,162:265-276. DOI: 10.1016/bs.pmbts.2019.01.005. 
											 												 doi: 10.1016/bs.pmbts.2019.01.005 pmid: 30905456  | 
										
| [3] |  
											  Rebbeck TR, Mitra N, Wan F, et al. Association of type and location of brca1 and brca2 mutations with risk of breast and ovarian cancer[J]. JAMA, 2015,313(13):1347-1361. DOI: 10.1001/jama.2014.5985. 
											 												 doi: 10.1001/jama.2014.5985 pmid: 25849179  | 
										
| [4] |  
											  Chen S, Iversen ES, Friebel T, et al. Characterization of BRCA1 and BRCA2 mutations in a large united states sample[J]. J Clin Oncol, 2006,24(6):863-871. DOI: 10.1200/jco.2005.03.6772. 
											 												 doi: 10.1200/JCO.2005.03.6772 pmid: 16484695  | 
										
| [5] |  
											  Sun J, Meng H, Yao L, et al. Germline mutations in cancer susceptibility genes in a large series of unselected breast cancer patients[J]. Clin Cancer Res, 2017,23(20):6113-6119. DOI: 10.1158/1078-0432.CCR-16-3227. 
											 												 pmid: 28724667  | 
										
| [6] |  
											  Buys SS, Sandbach JF, Gammon A, et al. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes[J]. Cancer, 2017,123(10):1721-1730. DOI: 10.1002/cncr.30498. 
											 												 pmid: 28085182  | 
										
| [7] |  
											  Tung N, Lin NU, Kidd J, et al. Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer[J]. J Clin Oncol, 2016,34(13):1460-1468. DOI: 10.1200/JCO.2015.65.0747. 
											 												 doi: 10.1200/JCO.2015.65.0747 pmid: 26976419  | 
										
| [8] |  
											  Yang X, Wu J, Lu J, et al. Identification of a comprehensive spectrum of genetic factors for hereditary breast cancer in a chinese population by next-generation sequencing[J]. PLoS One, 2015,10(4):e0125571. DOI: 10.1371/journal.pone.0125571. 
											 												 doi: 10.1371/journal.pone.0125571 pmid: 25927356  | 
										
| [9] | 中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2019年版)[J]. 中国癌症杂志, 2019,29(8):609-679. DOI: 10.19401/j.cnki.1007-3639.2019.08.009. | 
| [10] |  
											  Cuzick J, Sestak I, Cawthorn S, et al. Tamoxifen for prevention of breast cancer: extended long-term follow-up of the IBIS-I breast cancer prevention trial[J]. Lancet Oncol, 2015,16(1):67-75. DOI: 10.1016/s1470-2045(14)71171-4. 
											 												 doi: 10.1016/S1470-2045(14)71171-4 pmid: 25497694  | 
										
| [11] |  
											  Cuzick J, Sestak I, Forbes JF, et al. Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-Ⅱ): an international, double-blind, randomised placebo-controlled trial[J]. Lancet, 2014,383(9922):1041-1048. DOI: 10.1016/s0140-6736(13)62292-8. 
											 												 doi: 10.1016/S0140-6736(13)62292-8 pmid: 24333009  | 
										
| [12] | Carbine NE, Lostumbo L, Wallace J, et al. Risk-reducing mastectomy for the prevention of primary breast cancer[J]. Cochrane Database Syst Rev, 2018,4(4):CD002748. DOI: 10.1002/14651858.CD002748.pub4. | 
| [13] |  
											  Heemskerk-Gerritsen BAM, Jager A, Koppert LB, et al. Survival after bilateral risk-reducing mastectomy in healthy BRCA1 and BRCA2 mutation carriers[J]. Breast Cancer Res Treat, 2019,177(3):723-733. DOI: 10.1007/s10549-019-05345-2. 
											 												 doi: 10.1007/s10549-019-05345-2 pmid: 31302855  | 
										
| [14] |  
											  Brennan K, Garcia-Closas M, Orr N, et al. Intragenic ATM methy-lation in peripheral blood DNA as a biomarker of breast cancer risk[J]. Cancer Res, 2012,72(9):2304-2313. DOI: 10.1158/0008-5472.can-11-3157. 
											 												 doi: 10.1158/0008-5472.CAN-11-3157 pmid: 22374981  | 
										
| [15] |  
											  Chen J, Haanpää MK, Gruber JJ, et al. High-resolution bisulfite-sequencing of peripheral blood DNA methylation in early-onset and familial risk breast cancer patients[J]. Clin Cancer Res, 2019,25(17):5301-5314. DOI: 10.1158/1078-0432.ccr-18-2423. 
											 												 pmid: 31175093  | 
										
| [16] |  
											  Bosviel R, Garcia S, Lavediaux G, et al. BRCA1 promoter methylation in peripheral blood DNA was identified in sporadic breast cancer and controls[J]. Cancer Epidemiol, 2012,36(3):e177-e182. DOI: 10.1016/j.canep.2012.02.001. 
											 												 doi: 10.1016/j.canep.2012.02.001  | 
										
| [17] |  
											  Tang Q, Holland-Letz T, Slynko A, et al. DNA methylation array analysis identifies breast cancer associated RPTOR, MGRN1 and RAPSN hypomethylation in peripheral blood DNA[J]. Oncotarget, 2016,7(39):64191-64202. DOI: 10.18632/oncotarget.11640. 
											 												 doi: 10.18632/oncotarget.11640 pmid: 27577081  | 
										
| [18] |  
											  Yang R, Pfütze K, Zucknick M, et al. DNA methylation array analyses identified breast cancer-associated HYAL2 methylation in peripheral blood[J]. Int J Cancer, 2015,136(8):1845-1855. DOI: 10.1002/ijc.29205. 
											 												 doi: 10.1002/ijc.29205 pmid: 25213452  | 
										
| [19] |  
											  Yang R, Stöcker S, Schott S, et al. The association between breast cancer and S100P methylation in peripheral blood by multicenter case-control studies[J]. Carcinogenesis, 2017,38(3):312-320. DOI: 10.1093/carcin/bgx004. 
											 												 doi: 10.1093/carcin/bgx004 pmid: 28426874  | 
										
| [20] |  
											  Parashar S, Cheishvili D, Mahmood N, et al. DNA methylation signatures of breast cancer in peripheral T-cells[J]. BMC Cancer, 2018,18(1):574. DOI: 10.1186/s12885-018-4482-7. 
											 												 pmid: 29776342  | 
										
| [21] |  
											  Shan M, Yin H, Li J, et al. Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer[J]. Oncotarget, 2016,7(14):18485-18494. DOI: 10.18632/oncotarget.7608. 
											 												 doi: 10.18632/oncotarget.7608 pmid: 26918343  | 
										
| [22] |  
											  Cao X, Tang Q, Holland-Letz T, et al. Evaluation of promoter methy-lation of RASSF1A and ATM in peripheral blood of breast cancer patients and healthy control individuals[J]. Int J Mol Sci, 2018,19(3):900. DOI: 10.3390/ijms19030900. 
											 												 doi: 10.3390/ijms19030900  | 
										
| [23] |  
											  Bodelon C, Ambatipudi S, Dugué PA, et al. Blood DNA methylation and breast cancer risk: a meta-analysis of four prospective cohort studies[J]. Breast Cancer Res, 2019,21(1):62. DOI: 10.1186/s13058-019-1145-9. 
											 												 pmid: 31101124  | 
										
| [24] |  
											  Bind MA, Zanobetti A, Gasparrini A, et al. Effects of temperature and relative humidity on DNA methylation[J]. Epidemiology, 2014,25(4):561-569. DOI: 10.1097/ede.0000000000000120. 
											 												 doi: 10.1097/EDE.0000000000000120 pmid: 24809956  | 
										
| [25] |  
											  Zhang FF, Cardarelli R, Carroll J, et al. Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood[J]. Epigenetics, 2011,6(5):623-629. DOI: 10.4161/epi.6.5.15335. 
											 												 pmid: 21739720  | 
										
| [26] |  
											  Lal A, Ramazzotti D, Weng Z, et al. Comprehensive genomic cha-racterization of breast tumors with BRCA1 and BRCA2 mutations[J]. BMC Medical Genomics, 2019,12(1):84. DOI: 10.1186/s12920-019-0545-0. 
											 												 doi: 10.1186/s12920-019-0545-0 pmid: 31182087  | 
										
| [27] |  
											  Xu Z, Sandler DP, Taylor JA. Blood DNA methylation and breast cancer: a prospective case-cohort analysis in the sister study[J]. J Natl Cancer Inst, 2020,112(1):87-94. DOI: 10.1093/jnci/djz065. 
											 												 doi: 10.1093/jnci/djz065 pmid: 30989176  | 
										
| [28] |  
											  Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017,16(3):203-222. DOI: 10.1038/nrd.2016.246. 
											 												 doi: 10.1038/nrd.2016.246 pmid: 28209991  | 
										
| [29] |  
											  Farina NH, Ramsey JE, Cuke ME, et al. Development of a predictive mirna signature for breast cancer risk among high-risk women[J]. Oncotarget, 2017,8(68):112170-112183. DOI: 10.18632/oncotarget.22750. 
											 												 doi: 10.18632/oncotarget.22750 pmid: 29348816  | 
										
| [30] |  
											  Mishra S, Srivastava AK, Suman S, et al. Circulating miRNAs revealed as surrogate molecular signatures for the early detection of breast cancer[J]. Cancer Lett, 2015,369(1):67-75. DOI: 10.1016/j.canlet.2015.07.045. 
											 												 doi: 10.1016/j.canlet.2015.07.045  | 
										
| [31] |  
											  Zhang K, Wang YW, Wang YY, et al. Identification of microRNA biomarkers in the blood of breast cancer patients based on microNRA profiling[J]. Gene, 2017,619:10-20. DOI: 10.1016/j.gene.2017.03.038. 
											 												 pmid: 28359916  | 
										
| [32] |  
											  Shimomura A, Shiino S, Kawauchi J, et al. Novel combination of serum microrna for detecting breast cancer in the early stage[J]. Cancer Sci, 2016,107(3):326-334. DOI: 10.1111/cas.12880. 
											 												 doi: 10.1111/cas.12880 pmid: 26749252  | 
										
| [33] |  
											  Bidard FC, Michiels S, Riethdorf S, et al. Circulating tumor cells in breast cancer patients treated by neoadjuvant chemotherapy: a meta-analysis[J]. J Natl Cancer Inst, 2018,110(6):560-567. DOI: 10.1093/jnci/djy018. 
											 												 doi: 10.1093/jnci/djy018 pmid: 29659933  | 
										
| [34] |  
											  Rack B, Schindlbeck C, Jückstock J, et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients[J]. J Natl Cancer Inst, 2014,106(5):dju066. DOI: 10.1093/jnci/dju066. 
											 												 doi: 10.1093/jnci/dju066 pmid: 24832787  | 
										
| [35] |  
											  Franken B, de Groot MR, Mastboom WJ, et al. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer[J]. Breast Cancer Res, 2012,14(5):R133. DOI: 10.1186/bcr3333. 
											 												 pmid: 23088337  | 
										
| [36] |  
											  Zhang Y, Lv Y, Niu Y, et al. Role of circulating tumor cell (CTC) monitoring in evaluating prognosis of triple-negative breast cancer patients in China[J]. Med Sci Monit, 2017,23:3071-3079. DOI: 10.12659/msm.902637. 
											 												 doi: 10.12659/msm.902637 pmid: 28643770  | 
										
| [1] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. | 
| [2] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. | 
| [3] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. | 
| [4] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. | 
| [5] | 彭琴, 蔡玉婷, 王伟. KPNA2在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 181-185. | 
| [6] | 陈波光, 王苏贵, 张永杰. 血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. | 
| [7] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. | 
| [8] | 黄镇, 陈永顺. 循环肿瘤DNA在肝细胞癌诊疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 59-64. | 
| [9] | 王景, 许文婷. 中性粒细胞与淋巴细胞比值、癌胚抗原联合凝血指标对直径≤1.0 cm的良恶性乳腺结节鉴别诊断价值研究[J]. 国际肿瘤学杂志, 2023, 50(9): 520-526. | 
| [10] | 冯诚天, 黄芙蓉, 曹世玉, 王健宇, 南丁阿比雅思, 姜永冬, 朱娟英. HER2阳性乳腺癌患者HER2表达水平与影像学特征的关系[J]. 国际肿瘤学杂志, 2023, 50(9): 527-531. | 
| [11] | 冯东旭, 吴炜, 高平发, 王军, 施丽娟, 陈大伟, 李文兵, 张美峰. miR-451通过调控Rho/ROCK1信号通路对乳腺癌细胞糖酵解及凋亡的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 449-456. | 
| [12] | 王文德, 曾德. 乳腺癌内分泌治疗耐药的机制研究进展[J]. 国际肿瘤学杂志, 2023, 50(6): 352-356. | 
| [13] | 李青珊, 谢鑫, 张楠, 刘帅. 放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. | 
| [14] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏. HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. | 
| [15] | 周婷, 徐少华, 梅林. 贝伐珠单抗联合卡培他滨治疗晚期乳腺癌的有效性及安全性[J]. 国际肿瘤学杂志, 2023, 50(3): 144-149. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||
