Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (1): 59-64.doi: 10.3760/cma.j.cn371439-20230722-00008
Received:
2023-07-22
Revised:
2023-11-18
Online:
2024-01-08
Published:
2024-01-23
Contact:
Chen Yongshun
E-mail:yongshun2007@163.com
Huang Zhen, Chen Yongshun. Research progress of circulating tumor DNA in the diagnosis and treatment of hepatocellular carcinoma[J]. Journal of International Oncology, 2024, 51(1): 59-64.
[1] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. |
[2] | World Health Organization. GLOBOCAN 2020[EB/OL]. (2020-10-01)[2023-06-05]. http://gco.iarc.fr/today. |
[3] |
Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries[J]. Lancet Glob Health, 2018, 6(5): e555-e567. DOI: 10.1016/S2214-109X(18)30127-X.
pmid: 29653628 |
[4] |
Tzartzeva K, Obi J, Rich NE, et al. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis[J]. Gastroenterology, 2018, 154(6): 1706-1718.e1. DOI: 10.1053/j.gastro.2018.01.064.
pmid: 29425931 |
[5] |
Janiszewska M. The microcosmos of intratumor heterogeneity: the space-time of cancer evolution[J]. Oncogene, 2020, 39(10): 2031-2039. DOI: 10.1038/s41388-019-1127-5.
pmid: 31784650 |
[6] |
Kaseb AO, Sánchez NS, Sen S, et al. Molecular profiling of hepatocellular carcinoma using circulating cell-free DNA[J]. Clin Cancer Res, 2019, 25(20): 6107-6118. DOI: 10.1158/1078-0432.CCR-18-3341.
pmid: 31363003 |
[7] | Temraz S, Nasr R, Mukherji D, et al. Liquid biopsy derived circulating tumor cells and circulating tumor DNA as novel biomarkers in hepatocellular carcinoma[J]. Expert Rev Mol Diagn, 2022, 22(5): 507-518. DOI: 10.1080/14737159.2022.2094706. |
[8] | Mouliere F, Chandrananda D, Piskorz AM, et al. Enhanced detection of circulating tumor DNA by fragment size analysis[J]. Sci Transl Med, 2018, 10(466): eaat4921. DOI: 10.1126/scitranslmed.aat4921. |
[9] |
Elshimali YI, Khaddour H, Sarkissyan M, et al. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients[J]. Int J Mol Sci, 2013, 14(9): 18925-18958. DOI: 10.3390/ijms140918925.
pmid: 24065096 |
[10] |
Qin Z, Ljubimov VA, Zhou C, et al. Cell-free circulating tumor DNA in cancer[J]. Chin J Cancer, 2016, 35: 36. DOI: 10.1186/s40880-016-0092-4.
pmid: 27056366 |
[11] |
Zhang BO, Xu CW, Shao Y, et al. Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation[J]. Exp Ther Med, 2015, 9(4): 1383-1388. DOI:10.3892/etm.2015.2221.
pmid: 25780439 |
[12] | Forshew T, Murtaza M, Parkinson C, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequen-cing of plasma DNA[J]. Sci Transl Med, 2012, 4(136): 136ra68. DOI:10.1126/scitranslmed.3003726. |
[13] | Imperial R, Nazer M, Ahmed Z, et al. Matched whole-genome sequencing (WGS) and whole-exome sequencing (WES) of tumor tissue with circulating tumor DNA (ctDNA) analysis: complementary modalities in clinical practice[J]. Cancers (Basel), 2019, 11(9): 1399. DOI: 10.3390/cancers11091399. |
[14] |
McGuire AL, Caulfield T, Cho MK. Research ethics and the challenge of whole-genome sequencing[J]. Nat Rev Genet, 2008, 9(2): 152-156. DOI:10.1038/nrg2302.
pmid: 18087293 |
[15] |
Cai Z, Chen G, Zeng Y, et al. Comprehensive liquid profiling of circulating tumor DNA and protein biomarkers in long-term follow-up patients with hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25(17): 5284-5294. DOI: 10.1158/1078-0432.CCR-18-3477.
pmid: 31217202 |
[16] | Zhang Z, Chen P, Xie H, et al. Using circulating tumor DNA as a novel biomarker to screen and diagnose hepatocellular carcinoma: a systematic review and meta-analysis[J]. Cancer Med, 2020, 9(4): 1349-1364. DOI: 10.1002/cam4.2799. |
[17] |
Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test[J]. Science, 2018, 359(6378): 926-930. DOI: 10.1126/science.aar3247.
pmid: 29348365 |
[18] |
Chen X, Gole J, Gore A, et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test[J]. Nat Commun, 2020, 11(1): 3475. DOI: 10.1038/s41467-020-17316-z.
pmid: 32694610 |
[19] |
Cai J, Chen L, Zhang Z, et al. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma[J]. Gut, 2019, 68(12): 2195-2205. DOI: 10.1136/gutjnl-2019-318882.
pmid: 31358576 |
[20] |
Nakatsuka T, Nakagawa H, Hayata Y, et al. Post-treatment cell-free DNA as a predictive biomarker in molecular-targeted therapy of hepatocellular carcinoma[J]. J Gastroenterol, 2021, 56(5): 456-469. DOI: 10.1007/s00535-021-01773-4.
pmid: 33712873 |
[21] | Hirai M, Kinugasa H, Nouso K, et al. Prediction of the prognosis of advanced hepatocellular carcinoma by TERT promoter mutations in circulating tumor DNA[J]. J Gastroenterol Hepatol, 2021, 36(4): 1118-1125. DOI: 10.1111/jgh.15227. |
[22] | Sefrioui D, Verdier V, Savoye-Collet C, et al. Circulating DNA changes are predictive of disease progression after transarterial chemoembolization[J]. Int J Cancer, 2022, 150(3): 532-541. DOI: 10.1002/ijc.33829. |
[23] | Cai ZX, Chen G, Zeng YY, et al. Circulating tumor DNA profiling reveals clonal evolution and real-time disease progression in advanced hepatocellular carcinoma[J]. Int J Cancer, 2017, 141(5): 977-985. DOI: 10.1002/ijc.30798. |
[24] | Park S, Lee EJ, Rim CH, et al. Plasma cell-free DNA as a pre-dictive marker after radiotherapy for hepatocellular carcinoma[J]. Yonsei Med J, 2018, 59(4): 470-479. DOI: 10.3349/ymj.2018.59.4.470. |
[25] |
Forner A, Reig M, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2018, 391(10127): 1301-1314. DOI: 10.1016/S0140-6736(18)30010-2.
pmid: 29307467 |
[26] |
Vogel A, Cervantes A, Chau I, et al. Correction to: "Hepatocellular carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up"[J]. Ann Oncol, 2019, 30(5): 871-873. DOI: 10.1093/annonc/mdy510.
pmid: 30715202 |
[27] | Xie DY, Zhu K, Ren ZG, et al. A review of 2022 Chinese clinical guidelines on the management of hepatocellular carcinoma: updates and insights[J]. Hepatobiliary Surg Nutr, 2023, 12(2): 216-228. DOI: 10.21037/hbsn-22-469. |
[28] |
Wang J, Huang A, Wang YP, et al. Circulating tumor DNA correlates with microvascular invasion and predicts tumor recurrence of hepatocellular carcinoma[J]. Ann Transl Med, 2020, 8(5): 237. DOI: 10.21037/atm.2019.12.154.
pmid: 32309384 |
[29] |
Liu Z, Zhang Y, Shi C, et al. A novel immune classification reveals distinct immune escape mechanism and genomic alterations: implications for immunotherapy in hepatocellular carcinoma[J]. J Transl Med, 2021, 19(1): 5. DOI: 10.1186/s12967-020-02697-y.
pmid: 33407585 |
[30] |
Casak SJ, Donoghue M, Fashoyin-Aje L, et al. FDA approval summary: atezolizumab plus bevacizumab for the treatment of patients with advanced unresectable or metastatic hepatocellular carcinoma[J]. Clin Cancer Res, 2021, 27(7): 1836-1841. DOI: 10.1158/1078-0432.CCR-20-3407.
pmid: 33139264 |
[31] |
Singal G, Miller PG, Agarwala V, et al. Association of patient characteristics and tumor genomics with clinical outcomes among patients with non-small cell lung cancer using a clinicogenomic database[J]. JAMA, 2019, 321(14): 1391-1399. DOI: 10.1001/jama.2019.3241.
pmid: 30964529 |
[32] |
Jensen TJ, Goodman AM, Kato S, et al. Genome-wide sequencing of cell-free DNA identifies copy-number alterations that can be used for monitoring response to immunotherapy in cancer patients[J]. Mol Cancer Ther, 2019, 18(2): 448-458. DOI: 10.1158/1535-7163.MCT-18-0535.
pmid: 30523049 |
[33] |
Zhao W, Qiu L, Liu H, et al. Circulating tumor DNA as a potential prognostic and predictive biomarker during interventional therapy of unresectable primary liver cancer[J]. J Gastrointest Oncol, 2020, 11(5): 1065-1077. DOI: 10.21037/jgo-20-409.
pmid: 33209498 |
[34] |
Luke JJ, Bao R, Sweis RF, et al. Wnt/β-catenin pathway activation correlates with immune exclusion across human cancers[J]. Clin Cancer Res, 2019, 25(10): 3074-3083. DOI: 10.1158/1078-0432.CCR-18-1942.
pmid: 30635339 |
[35] |
Harding JJ, Nandakumar S, Armenia J, et al. Prospective genoty-ping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies[J]. Clin Cancer Res, 2019, 25(7): 2116-2126. DOI: 10.1158/1078-0432.CCR-18-2293.
pmid: 30373752 |
[36] | Kwee SA, Tiirikainen M. Beta-catenin activation and immunotherapy resistance in hepatocellular carcinoma: mechanisms and biomarkers[J]. Hepatoma Res, 2021, 7: 8. DOI: 10.20517/2394-5079.2020.124. |
[37] |
Oversoe SK, Clement MS, Weber B, et al. Combining tissue and circulating tumor DNA increases the detection rate of a CTNNB1 mutation in hepatocellular carcinoma[J]. BMC Cancer, 2021, 21(1): 376. DOI: 10.1186/s12885-021-08103-0.
pmid: 33827453 |
[38] |
von Felden J, Craig AJ, Garcia-Lezana T, et al. Mutations in circulating tumor DNA predict primary resistance to systemic therapies in advanced hepatocellular carcinoma[J]. Oncogene, 2021, 40(1): 140-151. DOI: 10.1038/s41388-020-01519-1.
pmid: 33097857 |
[39] | Ikeda S, Tsigelny IF, Skjevik ÅA, et al. Next-generation sequen-cing of circulating tumor DNA reveals frequent alterations in advanced hepatocellular carcinoma[J]. Oncologist, 2018, 23(5): 586-593. DOI: 10.1634/theoncologist.2017-0479. |
[40] |
Galle E, Thienpont B, Cappuyns S, et al. DNA methylation-driven EMT is a common mechanism of resistance to various therapeutic agents in cancer[J]. Clin Epigenetics, 2020, 12(1): 27. DOI: 10.1186/s13148-020-0821-z.
pmid: 32059745 |
[41] |
Ng CKY, Di Costanzo GG, Tosti N, et al. Genetic profiling using plasma-derived cell-free DNA in therapy-naïve hepatocellular carcinoma patients: a pilot study[J]. Ann Oncol, 2018, 29(5): 1286-1291. DOI: 10.1093/annonc/mdy083.
pmid: 29509837 |
[42] |
Alunni-Fabbroni M, Rönsch K, Huber T, et al. Circulating DNA as prognostic biomarker in patients with advanced hepatocellular carcinoma: a translational exploratory study from the SORAMIC trial[J]. J Transl Med, 2019, 17(1): 328. DOI: 10.1186/s12967-019-2079-9.
pmid: 31570105 |
[43] | Long G, Fang T, Su W, et al. The prognostic value of postoperative circulating cell-free DNA in operable hepatocellular carcinoma[J]. Scand J Gastroenterol, 2020, 55(12): 1441-1446. DOI: 10.1080/00365521.2020.1839127. |
[44] |
An Y, Guan Y, Xu Y, et al. The diagnostic and prognostic usage of circulating tumor DNA in operable hepatocellular carcinoma[J]. Am J Transl Res, 2019, 11(10): 6462-6474.
pmid: 31737198 |
[45] |
Li J, Jiang W, Wei J, et al. Patient specific circulating tumor DNA fingerprints to monitor treatment response across multiple tumors[J]. J Transl Med, 2020, 18(1): 293. DOI: 10.1186/s12967-020-02449-y.
pmid: 32738923 |
[46] |
Kim SS, Eun JW, Choi JH, et al. MLH1 single-nucleotide variant in circulating tumor DNA predicts overall survival of patients with hepatocellular carcinoma[J]. Sci Rep, 2020, 10(1): 17862. DOI: 10.1038/s41598-020-74494-y.
pmid: 33082400 |
[47] | Hirai M, Kinugasa H, Nouso K, et al. Prediction of the prognosis of advanced hepatocellular carcinoma by TERT promoter mutations in circulating tumor DNA[J]. J Gastroenterol Hepatol, 2021, 36(4): 1118-1125. DOI: 10.1111/jgh.15227. |
[48] | Shen T, Li SF, Wang JL, et al. TP53 R249S mutation detected in circulating tumour DNA is associated with prognosis of hepatocellular carcinoma patients with or without hepatectomy[J]. Liver Int, 2020, 40(11): 2834-2847. DOI: 10.1111/liv.14581. |
[49] |
Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA[J]. J Clin Oncol, 2014, 32(6): 579-586. DOI: 10.1200/JCO.2012.45.2011.
pmid: 24449238 |
[50] | Shen SY, Singhania R, Fehringer G, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes[J]. Nature, 2018, 563(7732): 579-583. DOI: 10.1038/s41586-018-0703-0. |
[51] | Cristiano S, Leal A, Phallen J, et al. Genome-wide cell-free DNA fragmentation in patients with cancer[J]. Nature, 2019, 570(7761): 385-389. DOI: 10.1038/s41586-019-1272-6. |
[52] |
Wan N, Weinberg D, Liu TY, et al. Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA[J]. BMC Cancer, 2019, 19(1): 832. DOI: 10.1186/s12885-019-6003-8.
pmid: 31443703 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[4] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[5] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[6] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[7] | Wan Fang, Yang Gang, Li Rui, Wan Qijing. Expression levels and clinical significance of serum miR-497 and miR-383 in patients with esophageal cancer [J]. Journal of International Oncology, 2024, 51(4): 204-209. |
[8] | Yao Yixin, Shen Yulin. Predictive value of serum SOCS3 and TXNIP levels for the prognosis of patients with hepatocellular carcinoma treated with TACE [J]. Journal of International Oncology, 2024, 51(4): 217-222. |
[9] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[10] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[11] | Peng Qin, Cai Yuting, Wang Wei. Advances on KPNA2 in liver cancer [J]. Journal of International Oncology, 2024, 51(3): 181-185. |
[12] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[13] | Jin Xudong, Chen Zhongjian, Mao Weimin. Research progress on the role of MTAP in malignant mesothelioma [J]. Journal of International Oncology, 2024, 51(2): 99-104. |
[14] | Wang Xiao, Li Ying, Luo Yujie, Jin Shu. Study on the prognostic value of serological indicators for nasopharyngeal carcinoma based on nomogram model [J]. Journal of International Oncology, 2023, 50(8): 463-469. |
[15] | Liu Debao, Sun Ziwen, Lu Shoutang, Xu Haidong. Expression and clinical significance of ASB6 in colorectal cancer tissues [J]. Journal of International Oncology, 2023, 50(8): 470-474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||