
Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (5): 310-314.doi: 10.3760/cma.j.cn371439-20230227-00062
• Reviews • Previous Articles Next Articles
Received:2023-02-27
															
							
																	Revised:2023-04-01
															
							
															
							
																	Online:2023-05-08
															
							
																	Published:2023-06-27
															
						Contact:
								Zhang Wei   
																	E-mail:zhang_wei_1980@163.com
																					Supported by:Chen Fengyang, Zhang Wei. Application of machine learning in liver disease: improving diagnosis, treatment, and efficacy evaluation[J]. Journal of International Oncology, 2023, 50(5): 310-314.
| [1] | Mitchell TM. Machine learning[M]. New York: McGraw-Hill, 1997. | 
| [2] |  
											 Ding H, Fawad M, Xu X, et al. A framework for identification and classification of liver diseases based on machine learning algorithms[J]. Front Oncol, 2022, 12: 1048348. DOI: 10.3389/fonc.2022.1048348. 
																							 doi: 10.3389/fonc.2022.1048348  | 
										
| [3] |  
											 Wu Y, Yang X, Morris HL, et al. Noninvasive diagnosis of nonalcoholic steatohepatitis and advanced liver fibrosis using machine lear-ning methods: comparative study with existing quantitative risk scores[J]. JMIR Med Inform, 2022, 10(6): e36997. DOI: 10.2196/36997. 
																							 doi: 10.2196/36997  | 
										
| [4] |  
											 Pei X, Deng Q, Liu Z, et al. Machine learning algorithms for predicting fatty liver disease[J]. Ann Nutr Metab, 2021, 77(1): 38-45. DOI: 10.1159/000513654. 
																							 doi: 10.1159/000513654  | 
										
| [5] |  
											 Li J, Tao Y, Cong H, et al. Predicting liver cancers using skewed epidemiological data[J]. Artif Intell Med, 2022, 124: 102234. DOI: 10.1016/j.artmed.2021.102234. 
																							 doi: 10.1016/j.artmed.2021.102234  | 
										
| [6] |  
											 Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics[J]. Nat Rev Genet, 2015, 16(6): 321-332. DOI: 10.1038/nrg3920. 
																							 doi: 10.1038/nrg3920 pmid: 25948244  | 
										
| [7] |  
											 Han N, He J, Shi L, et al. Identification of biomarkers in nonalcoholic fatty liver disease: a machine learning method and experimental study[J]. Front Genet, 2022, 13: 1020899. DOI: 10.3389/fgene.2022.1020899. 
																							 doi: 10.3389/fgene.2022.1020899  | 
										
| [8] |  
											 Mann M, Kumar C, Zeng WF, et al. Artificial intelligence for proteomics and biomarker discovery[J]. Cell Syst, 2021, 12(8): 759-770. DOI: 10.1016/j.cels.2021.06.006. 
																							 doi: 10.1016/j.cels.2021.06.006 pmid: 34411543  | 
										
| [9] |  
											 Zhang S, Liu Y, Chen J, et al. Autoantibody signature in hepatocellular carcinoma using seromics[J]. J Hematol Oncol, 2020, 13(1): 85. DOI: 10.1186/s13045-020-00918-x. 
																							 doi: 10.1186/s13045-020-00918-x  | 
										
| [10] |  
											 Streba CT, Ionescu M, Gheonea DI, et al. Contrast-enhanced ultrasonography parameters in neural network diagnosis of liver tumors[J]. World J Gastroenterol, 2012, 18(32): 4427-4434. DOI: 10.3748/wjg.v18.i32.4427. 
																							 doi: 10.3748/wjg.v18.i32.4427  | 
										
| [11] |  
											 Turco S, Tiyarattanachai T, Ebrahimkheil K, et al. Interpretable machine learning for characterization of focal liver lesions by contrast-enhanced ultrasound[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2022, 69(5): 1670-1681. DOI: 10.1109/TUFFC.2022.3161719. 
																							 doi: 10.1109/TUFFC.2022.3161719 pmid: 35320099  | 
										
| [12] |  
											 Căleanu CD, Sîrbu CL, Simion G. Deep neural architectures for contrast enhanced ultrasound (CEUS) focal liver lesions automated diagnosis[J]. Sensors (Basel), 2021, 21(12): 4126. DOI: 10.3390/s21124126. 
																							 doi: 10.3390/s21124126  | 
										
| [13] |  
											 Nebbia G, Zhang Q, Arefan D, et al. Pre-operative microvascular invasion prediction using multi-parametric liver MRI radiomics[J]. J Digit Imaging, 2020, 33(6): 1376-1386. DOI: 10.1007/s10278-020-00353-x. 
																							 doi: 10.1007/s10278-020-00353-x  | 
										
| [14] |  
											 Nakaura T, Higaki T, Awai K, et al. A primer for understanding radiology articles about machine learning and deep learning[J]. Diagn Interv Imaging, 2020, 101(12): 765-770. DOI: 10.1016/j.diii.2020.10.001. 
																							 doi: 10.1016/j.diii.2020.10.001  | 
										
| [15] |  
											 Sandfort V, Yan K, Pickhardt PJ, et al. Data augmentation using generative adversarial networks (CycleGAN) to improve generali-zability in CT segmentation tasks[J]. Sci Rep, 2019, 9(1): 16884. DOI: 10.1038/s41598-019-52737-x. 
																							 doi: 10.1038/s41598-019-52737-x pmid: 31729403  | 
										
| [16] |  
											 Mulé S, Galletto Pregliasco A, Tenenhaus A, et al. Multiphase liver MRI for identifying the macrotrabecular-massive subtype of hepatocellular carcinoma[J]. Radiology, 2020, 295(3): 562-571. DOI: 10.1148/radiol.2020192230. 
																							 doi: 10.1148/radiol.2020192230 pmid: 32228294  | 
										
| [17] |  
											 Mulé S, Lawrance L, Belkouchi Y, et al. Generative adversarial networks (GAN)-based data augmentation of rare liver cancers: the SFR 2021 artificial intelligence data challenge[J]. Diagn Interv Imaging, 2023, 104(1): 43-48. DOI: 10.1016/j.diii.2022.09.005. 
																							 doi: 10.1016/j.diii.2022.09.005  | 
										
| [18] |  
											 Heusel M, Ramsauer H, Unterthiner T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA: Curran Associates Inc., 2017: 6629-6640. DOI: 10.5555/3295222.3295408. 
																							 doi: 10.5555/3295222.3295408  | 
										
| [19] | Xu Q, Huang G, Yuan Y, et al. An empirical study on evaluation metrics of generative adversarial networks[DB/OL]. [2018-08-17][2023-02-19]. https://arxiv.org/abs/1806.07755v1. | 
| [20] |  
											 Teramoto T, Shinohara T, Takiyama A. Computer-aided classification of hepatocellular ballooning in liver biopsies from patients with NASH using persistent homology[J]. Comput Methods Programs Biomed, 2020, 195: 105614. DOI: 10.1016/j.cmpb.2020.105614. 
																							 doi: 10.1016/j.cmpb.2020.105614  | 
										
| [21] |  
											 Matteoni CA, Younossi ZM, Gramlich T, et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity[J]. Gastroenterology, 1999, 116(6): 1413-1419. DOI: 10.1016/S0016-5085(99)70506-8. 
																							 doi: 10.1016/s0016-5085(99)70506-8 pmid: 10348825  | 
										
| [22] |  
											 Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides[J]. Hepatology, 2020, 72(6): 2000-2013. DOI: 10.1002/hep.31207. 
																							 doi: 10.1002/hep.31207  | 
										
| [23] |  
											 Minerali E, Foil DH, Zorn KM, et al. Comparing machine learning algorithms for predicting drug-induced liver injury (DILI)[J]. Mol Pharm, 2020, 17(7): 2628-2637. DOI: 10.1021/acs.molpharmaceut.0c00326. 
																							 doi: 10.1021/acs.molpharmaceut.0c00326  | 
										
| [24] |  
											 Chen M, Suzuki A, Thakkar S, et al. DILIrank: the largest refe-rence drug list ranked by the risk for developing drug-induced liver injury in humans[J]. Drug Discov Today, 2016, 21(4): 648-653. DOI: 10.1016/j.drudis.2016.02.015. 
																							 doi: 10.1016/j.drudis.2016.02.015  | 
										
| [25] |  
											 Williams DP, Lazic SE, Foster AJ, et al. Predicting drug-induced liver injury with Bayesian machine learning[J]. Chem Res Toxicol, 2020, 33(1): 239-248. DOI: 10.1021/acs.chemrestox.9b00264. 
																							 doi: 10.1021/acs.chemrestox.9b00264 pmid: 31535850  | 
										
| [26] |  
											 Aleo MD, Shah F, Allen S, et al. Moving beyond binary predictions of human drug-induced liver injury (DILI) toward contrasting relative risk potential[J]. Chem Res Toxicol, 2020, 33(1): 223-238. DOI: 10.1021/acs.chemrestox.9b00262. 
																							 doi: 10.1021/acs.chemrestox.9b00262 pmid: 31532188  | 
										
| [27] |  
											 Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system[J]. Pharm Res, 2005, 22(1): 11-23. DOI: 10.1007/s11095-004-9004-4. 
																							 doi: 10.1007/s11095-004-9004-4  | 
										
| [28] |  
											 Mazzaferro V, Llovet JM, Miceli R, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis[J]. Lancet Oncol, 2009, 10(1): 35-43. DOI: 10.1016/S1470-2045(08)70284-5. 
																							 doi: 10.1016/S1470-2045(08)70284-5 pmid: 19058754  | 
										
| [29] |  
											 Kim WR, Lake JR, Smith JM, et al. OPTN/SRTR 2017 annual data report: liver[J]. Am J Transplant, 2019, 19 Suppl 2: 184-283. DOI: 10.1111/ajt.15276. 
																							 doi: 10.1111/ajt.15276 pmid: 30811890  | 
										
| [30] |  
											 He T, Fong JN, Moore LW, et al. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer[J]. Comput Med Imaging Graph, 2021, 89: 101894. DOI: 10.1016/j.compmedimag.2021.101894. 
																							 doi: 10.1016/j.compmedimag.2021.101894  | 
										
| [1] | Chen Qi, Xu Chenyang, Wang Yin, Lei Dapeng. Current application status of hyperspectral imaging in the diagnosis and treatment of head and neck tumor [J]. Journal of International Oncology, 2024, 51(5): 298-302. | 
| [2] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. | 
| [3] | Yang Lirong, Wang Yufeng. Construction of machine learning models for predicting the risk of postoperative distant metastasis recurrence in serous ovarian cancer [J]. Journal of International Oncology, 2023, 50(4): 220-226. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
