Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (3): 180-184.doi: 10.3760/cma.j.issn.1673-422X.2020.03.010
• Review • Previous Articles Next Articles
Received:
2019-09-11
Revised:
2019-12-25
Online:
2020-03-08
Published:
2020-05-27
Contact:
Zhao Yi
E-mail:zhaoyi0411@126.com
Jin Chenxing, Zhao Yi. Research progress of KRAS mutation in lung adenocarcinoma[J]. Journal of International Oncology, 2020, 47(3): 180-184.
[1] | Zhang Q, Du Y, Zhang X , et al. Comprehensive validation of snapback primer-based melting curve analysis to detect nucleotide variation in the codon 12 and 13 of KRAS gene[J]. Biomed Res Int, 2018,2018:8727941. DOI: 10.1155/2018/8727941. |
[2] |
D'Amico S, Shi J, Martin BL , et al. STAT3 is a master regulator of epithelial identity and KRAS-driven tumorigenesis[J]. Genes Dev, 2018,32(17-18):1175-1187. DOI: 10.1101/gad.311852.118.
doi: 10.1101/gad.311852.118 |
[3] |
Liu K, Guo J, Liu K , et al. Integrative analysis reveals distinct subtypes with therapeutic implications in KRAS-mutant lung adenocarcinoma[J]. EBioMedicine, 2018,36:196-208. DOI: 10.1016/j.ebiom.2018.09.034.
doi: 10.1016/j.ebiom.2018.09.034 |
[4] |
Khosravi N, Caetano MS, Cumpian AM , et al. IL22 promotes Kras-mutant lung cancer by induction of a protumor immune response and protection of stemness properties[J]. Cancer Immunol Res, 2018,6(7):788-797. DOI: 10.1158/2326-6066.CIR-17-0655.
doi: 10.1158/2326-6066.CIR-17-0655 |
[5] |
Fujimoto J, Nunomura-Nakamura S, Liu Y , et al. Development of Kras mutant lung adenocarcinoma in mice with knockout of the airway lineage-specific gene Gprc5a[J]. Int J Cancer, 2017,141(8):1589-1599. DOI: 10.1002/ijc.30851.
doi: 10.1002/ijc.v141.8 |
[6] |
Liu W, Yin Y, Wang J , et al. Kras mutations increase telomerase activity and targeting telomerase is a promising therapeutic strategy for Kras-mutant NSCLC[J]. Oncotarget, 2017,8(1):179-190. DOI: 10.18632/oncotarget.10162.
doi: 10.18632/oncotarget.v8i1 |
[7] |
Liu J, Cho SN, Wu SP , et al. Mig-6 deficiency cooperates with oncogenic Kras to promote mouse lung tumorigenesis[J]. Lung Cancer, 2017,112:47-56. DOI: 10.1016/j.lungcan.2017.08.001.
doi: 10.1016/j.lungcan.2017.08.001 |
[8] |
Elangovan IM, Vaz M, Tamatam CR , et al. FOSL1 promotes Kras-induced lung cancer through amphiregulin and cell survival gene regulation[J]. Am J Respir Cell Mol Biol, 2018,58(5):625-635. DOI: 10.1165/rcmb.2017-0164OC.
doi: 10.1165/rcmb.2017-0164OC |
[9] |
Nagy Á, Pongor LS, Szabó A , et al. KRAS driven expression signature has prognostic power superior to mutation status in non-small cell lung cancer[J]. Int J Cancer, 2017,140(4):930-937. DOI: 10.1002/ijc.30509.
doi: 10.1002/ijc.v140.4 |
[10] | Jia Y, Jiang T, Li X , et al. Characterization of distinct types of KRAS mutation and its impact on first-line platinum-based chemotherapy in Chinese patients with advanced non-small cell lung cancer[J]. Oncol Lett, 2017,14(6):6525-6532. DOI: 10.3892/ol.2017.7016. |
[11] |
Chen L, Hu X, Wu H , et al. Unique profiles of targetable genomic alterations and prognosis in young Chinese patients with lung adenocarcinoma[J]. Pathol Res Pract, 2019,215(6):152407. DOI: 10.1016/j. prp.2019.03.035.
doi: 10.1016/j.prp.2019.03.035 |
[12] |
Kuroda H, Yoshida T, Arimura T , et al. Contribution of smoking habit to the prognosis of stage Ⅰ KRAS-mutated non-small cell lung cancer[J]. Cancer Biomark, 2018,23(3):419-426. DOI: 10.3233/CBM-181483.
doi: 10.3233/CBM-181483 |
[13] |
Yang IS, Kim S . Isoform specific gene expression analysis of KRAS in the prognosis of lung adenocarcinoma patients[J]. BMC Bioinformatics, 2018,19(Suppl 1):40. DOI: 10.1186/s12859-018-2011-y.
doi: 10.1186/s12859-018-2011-y |
[14] |
Arbour KC, Jordan E, Kim HR , et al. Effects of cooccurring genomic alterations on outcomes in patients with KRAS-mutant non-small cell lung cancer[J]. Clin Cancer Res, 2018,24(2):334-340. DOI: 10.1158/1078-0432.CCR-17-1841.
doi: 10.1158/1078-0432.CCR-17-1841 |
[15] |
Zhao XD, Deng HB, Lu CL , et al. Association of EGFR and KRAS mutations with expression of p-AKT, DR5 and DcR1 in non-small cell lung cancer[J]. Neoplasma, 2017,64(2):182-191. DOI: 10.4149/neo_2017_203.
doi: 10.4149/neo_2017_203 |
[16] |
Ziv E, Erinjeri JP, Yarmohammadi H , et al. Lung adenocarcinoma: predictive value of KRAS mutation status in assessing local recurrence in patients undergoing image-guided ablation[J]. Radiology, 2017,282(1):251-258. DOI: 10.1148/radiol.2016160003.
doi: 10.1148/radiol.2016160003 |
[17] | Bauer AK, Umer M, Richardson VL , et al. Requirement for MUC5AC in KRAS-dependent lung carcinogenesis[J]. JCI Insight, 2018,3(15). pii:120941. DOI: 10.1172/jci.insight.120941. |
[18] |
Yang S, Yu X, Fan Y , et al. Clinicopathologic characteristics and survival outcome in patients with advanced lung adenocarcinoma and KRAS mutation[J]. J Cancer, 2018,9(16):2930-2937. DOI: 10.7150/jca.24425.
doi: 10.7150/jca.24425 |
[19] | AMG 510 first to inhibit "Undruggable" KRAS[J]. Cancer Discov, 2019,9(8):988-989. DOI: 10.1158/2159-8290. CD-NB2019-073. |
[20] |
Liang SQ, Buhrer ED, Berezowska S , et al. mTOR mediates a mechanism of resistance to chemotherapy and defines a rational combination strategy to treat KRAS-mutant lung cancer[J]. Oncogene, 2019,38(5):622-636. DOI: 10.1038/s41388-018-0479-6.
doi: 10.1038/s41388-018-0479-6 |
[21] |
Zarredar H, Pashapour S, Ansarin K , et al. Combination therapy with KRAS siRNA and EGFR inhibitor AZD8931 suppresses lung cancer cell growth in vitro[J]. J Cell Physiol, 2019,234(2):1560-1566. DOI: 10.1002/jcp.27021.
doi: 10.1002/jcp.27021 |
[22] | Onodera K, Sakurada A, Notsuda H , et al. Growth inhibition of KRAS- and EGFR-mutant lung adenocarcinoma by cosuppression of STAT3 and the SRC/ARHGAP35 axis[J]. Oncol Rep, 2018,40(3):1761-1768. DOI: 10.3892/or.2018.6536. |
[23] | Yuan XH, Yang J, Wang XY , et al. Association between EGFR/KRAS mutation and expression of VEGFA, VEGFR and VEGFR2 in lung adenocarcinoma[J]. Oncol Lett, 2018,16(2):2105-2112. DOI: 10.3892/ol.2018.8901. |
[24] |
Kruspig B, Monteverde T, Neidler S , et al. The ERBB network facilitates KRAS-driven lung tumorigenesis[J]. Sci Transl Med, 2018,10(446). pii: eaao2565. DOI: 10.1126/scitranslmed.aao2565.
doi: 10.1126/scitranslmed.aao2565 |
[25] | Sumi T, Hirai S, Yamaguchi M , et al. Survivin knockdown induces senescence in TTF-1-expressing, KRAS-mutant lung adenocarcinomas[J]. Int J Oncol, 2018,53(1):33-46. DOI: 10.3892/ijo.2018.4365. |
[26] |
Sumi T, Hirai S, Yamaguchi M , et al. Trametinib downregulates survivin expression in RB1-positive KRAS-mutant lung adenocarcinoma cells[J]. Biochem Biophys Res Commun, 2018,501(1):253-258. DOI: 10.1016/j.bbrc.2018.04.230.
doi: 10.1016/j.bbrc.2018.04.230 |
[27] |
Jauset T, Massó Vallés D, Martínez Martín S , et al. BET inhibition is an effective approach against KRAS-driven PDAC and NSCLC[J]. Oncotarget, 2018,9(27):18734-18746. DOI: 10.18632/oncotarget.24648.
doi: 10.18632/oncotarget.v9i27 |
[28] |
Vreka M, Lilis I, Papageorgopoulou M , et al. ΙκΒ kinase α is required for development and progression of KRAS-mutant lung adenocarcinoma[J]. Cancer Res, 2018,78(11):2939-2951. DOI: 10.1158/0008-5472.CAN-17-1944.
doi: 10.1158/0008-5472.CAN-17-1944 |
[29] |
Song N, Zhu F, Wang Z , et al. IKKα inactivation promotes Kras-initiated lung adenocarcinoma development through disrupting major redox regulatory pathways[J]. Proc Natl Acad Sci U S A, 2018,115(4):E812-E821. DOI: 10.1073/pnas.1717520115.
doi: 10.1073/pnas.1717520115 |
[30] |
Gerber DE, Socinski MA, Neal JW , et al. Randomized phase 2 study of tivantinib plus erlotinib versus single-agent chemotherapy in previously treated KRAS mutant advanced non-small cell lung cancer[J]. Lung Cancer, 2018,117:44-49. DOI: 10.1016/j.lungcan.2018.01.010.
doi: 10.1016/j.lungcan.2018.01.010 |
[31] |
Leung ELH, Luo LX, Liu ZQ , et al. Inhibition of KRAS-dependent lung cancer cell growth by deltarasin: Blockage of autophagy increases its cytotoxicity[J]. Cell Death Dis, 2018,9(2):216. DOI: 10.1038/s41419-017-0065-9.
doi: 10.1038/s41419-017-0065-9 |
[32] |
Román M, López I, Guruceaga E , et al. Inhibitor of differentiation-1 sustains mutant KRAS-driven progression, maintenance, and metastasis of lung adenocarcinoma via regulation of a FOSL1 network[J]. Cancer Res, 2019,79(3):625-638. DOI: 10.1158/0008-5472.CAN-18-1479.
doi: 10.1158/0008-5472.CAN-18-1479 |
[33] |
Macheleidt IF, Dalvi PS, Lim SY , et al. Preclinical studies reveal that LSD1 inhibition results in tumor growth arrest in lung adenocarcinoma independently of driver mutations[J]. Mol Oncol, 2018,12(11):1965-1979. DOI: 10.1002/1878-0261.12382.
doi: 10.1002/mol2.2018.12.issue-11 |
[34] | 李惠, 王颖, 杨佳丽 , 等. 囊性纤维化跨膜转导调节子(CFTR)对肺癌A549细胞恶性特性的影响研究[J]. 中国肺癌杂志, 2018,21(2):89-98. DOI: 10.3779/j.issn.1009-3419.2018.02.03. |
[35] |
Fields AP, Ali SA, Justilien V , et al. Targeting oncogenic protein kinase for treatment of mutant KRAS LADC[J]. Small GTPases, 2017,8(1):58-64. DOI: 10.1080/21541248.2016.1194953.
doi: 10.1080/21541248.2016.1194953 |
[36] |
Zeng DX, Wang CG, Huang JA , et al. Apatinib in the treatment of advanced lung adenocarcinoma with KRAS mutation[J]. Onco Targets Ther, 2017,10:4269-4272. DOI: 10.2147/OTT.S139520.
doi: 10.2147/OTT |
[37] |
Zhou X, Padanad MS, Evers BM , et al. Modulation of mutant Kras G12D-driven lung tumorigenesis in vivo by gain or loss of PCDH7 function [J]. Mol Cancer Res, 2019,17(2):594-603. DOI: 10.1158/1541-7786.MCR-18-0739.
doi: 10.1158/1541-7786.MCR-18-0739 |
[38] | Jin J, Park G, Park JB , et al. An anti-EGFR × cotinine bispecific antibody complexed with cotinine-conjugated duocarmycin inhibits growth of EGFR-positive cancer cells with KRAS mutations[J]. Exp Mol Med, 2018,50(5):1-14. DOI: 10.1038/s12276-018-0096-z. |
[39] |
Song P, Guo L, Li W , et al. Clinicopathologic correlation with expression of PD-L1 on both tumor cells and tumor-infiltrating immune cells in patients with non-small cell lung cancer[J]. J Immunother, 2019,42(1):23-28. DOI: 10.1097/CJI.0000000000000249.
doi: 10.1097/CJI.0000000000000249 |
[40] |
Adeegbe DO, Liu S, Hattersley MM , et al. BET Bromodomain inhibition cooperates with PD-1 blockade to facilitate antitumor response in Kras-mutant non-small cell lung cancer[J]. Cancer Immunol Res, 2018,6(10):1234-1245. DOI: 10.1158/2326-6066.CIR-18-0077.
doi: 10.1158/2326-6066.CIR-18-0077 |
[41] |
Falk AT, Yazbeck N, Guibert N , et al. Effect of mutant variants of the KRAS gene on PD-L1 expression and on the immune microenvironment and association with clinical outcome in lung adenocarcinoma patients[J]. Lung Cancer, 2018,121:70-75. DOI: 10.1016/j.lungcan.2018.05.009.
doi: 10.1016/j.lungcan.2018.05.009 |
[42] |
Kim H, Kwon HJ, Park SY , et al. Clinicopathological analysis and prognostic significance of programmed cell death-ligand 1 protein and mRNA expression in non-small cell lung cancer[J]. PLoS One, 2018,13(6):e0198634. DOI: 10.1371/journal.pone.0198634.
doi: 10.1371/journal.pone.0198634 |
[43] |
Zhang XC, Wang J, Shao GG , et al. Comprehensive genomic and immunological characterization of Chinese non-small cell lung cancer patients[J]. Nat Commun, 2019,10(1):1772. DOI: 10.1038/s41467-019-09762-1.
doi: 10.1038/s41467-019-09762-1 |
[44] |
Skoulidis F, Goldberg ME, Greenawalt DM , et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma[J]. Cancer Discov, 2018,8(7):822-835. DOI: 10.1158/2159-8290.CD-18-0099.
doi: 10.1158/2159-8290.CD-18-0099 |
[45] |
Minchom A, Thavasu P, Ahmad Z , et al. A study of PD-L1 expression in KRAS mutant non-small cell lung cancer cell lines exposed to relevant targeted treatments[J]. PLoS One, 2017,12(10):e0186106. DOI: 10.1371/journal.pone.0186106.
doi: 10.1371/journal.pone.0186106 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||