Journal of International Oncology ›› 2016, Vol. 43 ›› Issue (12): 935-939.doi: 10.3760/cma.j.issn.1673422X.2016.12.014
Previous Articles Next Articles
ZHANG Shuai, AI Bin
Online:
2016-12-08
Published:
2016-11-02
ZHANG Shuai, AI Bin. Drugdrug interactions with tyrosinekinase inhibitors in lung cancer[J]. Journal of International Oncology, 2016, 43(12): 935-939.
[1] Ciardiello F, Tortora G. EGFR antagonists in cancer treatment[J]. N Engl J Med, 2008, 358(11): 11601174. DOI: 10.1056/NEJMra0707704. [2] Swaisland HC, Smith RP, Laight A, et al. Singledose clinical pharmacokinetic studies of gefitinib[J]. Clin Pharmacokinet, 2005, 44(11): 11651177. DOI: 10.2165/0000308820054411000004. [3] Pajares B, Torres E, Trigo JM, et al. Tyrosine kinase inhibitors and drug interactions: a review with practical recommendations[J]. Clin Transl Oncol, 2012, 14(2): 94101. DOI: 10.1007/s1209401207675. [4] Onoda S, Mitsufuji H, Yanase N, et al. Drug interaction between gefitinib and warfarin[J]. Jpn J Clin Oncol, 2005, 35(8): 478482. DOI: 10.1093/jjco/hyi122. [5] Yamaguchi T, Isogai S, Okamura T, et al. Pharmacokinetics of gefitinib in a patient with nonsmall cell lung cancer undergoing continuous ambulatory peritoneal dialysis[J]. Case Rep Oncol, 2015, 8(1): 7882. DOI: 10.1159/000375485. [6] Li J, Zhao M, He P, et al. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes[J]. Clin Cancer Res, 2007,13(12):37313737. DOI: 10.1158/10780432.CCR070088. [7] Rakhit A, Pantze MP, Fettner S, et al. The effects of CYP3A4 inhibition on erlotinib pharmacokinetics: computerbased simulation (SimCYP) predicts in vivo metabolic inhibition[J]. Eur J Clin Pharmacol, 2008,64(1):3141. DOI: 10.1007/s002280070396z. [8] Pillai VC, Venkataramanan R, Parise RA, et al. Ritonavir and efavirenz significantly alter the metabolism of erlotiniban observation in primary cultures of human hepatocytes that is relevant to HIV patients with cancer[J]. Drug Metab Dispos, 2013, 41(10): 18431851. DOI: 10.1124/dmd.113.052100. [9] Wahl RU, Megahed M. Erlotinibinduced acneiform eruption[J]. Hautarzt, 2013, 64(5): 334336. DOI: 10.1007/s001050132551z. [10] Thomas KS, Billingsley A, Amarshi N, et al. Elevated international normalized ratio associated with concomitant warfarin and erlotinib[J]. Am J Health Syst Pharm, 2010, 67(17): 14261429. DOI: 10.2146/ajhp090202. [11] Liu D, Jiang J, Zhang L, et al. Clinical pharmacokinetics of Icotinib, an anticancer drug: evaluation of dose proportionality, food effect, and tolerability in healthy subjects[J]. Cancer Chemother Pharmacol, 2014, 73(4): 721727. DOI: 10.1007/s0028001423988. [12] Liu D, Zhang L, Wu Y, et al. Clinical pharmacokinetics, safety, and preliminary efficacy evaluation of icotinib in patients with advanced nonsmall cell lung cancer[J]. Lung Cancer, 2015, 89(3): 262267. DOI: 10.1016/j.lungcan.2015.05.024. [13] Gao Z, Chen W, Zhang X, et al. Icotinib, a potent and specific EGFR tyrosine kinase inhibitor, inhibits growth of squamous cell carcinoma cell line A431 through negatively regulating AKT signaling[J]. Biomed Pharmacother, 2013, 67(5): 351356. DOI: 10.1016/j.biopha.2013.03.012. [14] Ruan CJ, Liu DY, Jiang J, et al. Effect of the CYP2C19 genotype on the pharmacokinetics of icotinib in healthy male volunteers[J]. Eur J Clin Pharmacol, 2012, 68(12): 16771680. DOI: 10.1007/s0022801212884. [15] Freiwald M, Schmid U, Fleury A, et al. Population pharmacokinetics of afatinib, an irreversible ErbB family blocker, in patients with various solid tumors[J]. Cancer Chemother Pharmacol, 2014, 73(4): 759770. DOI: 10.1007/s0028001424032. [16] Wind S, Giessmann T, Jungnik A, et al. Pharmacokinetic drug interactions of afatinib with rifampicin and ritonavir[J]. Clin Drug Investig, 2014, 34(3): 173182. DOI: 10.1007/s4026101301612. [17] Schnell D, Buschke S, Fuchs H, et al. Pharmacokinetics of afatinib in subjects with mild or moderate hepatic impairment[J]. Cancer Chemother Pharmacol, 2014, 74(2): 267275. DOI: 10.1007/s002800142484y. [18] Jnne PA, Boss DS, Camidge DR, et al. Phase Ⅰ doseescalation study of the panHER inhibitor, PF299804, in patients with advanced malignant solid tumors[J]. Clin Cancer Res, 2011, 17(5): 11311139. DOI: 10.1158/10780432.CCR101220. [19] RuizGarcia A, Giri N, LaBadie RR, et al. A phase Ⅰ openlabel study to investigate the potential drugdrug interaction between singledose dacomitinib and steadystate paroxetine in healthy volunteers[J]. J Clin Pharmacol, 2014, 54(5): 555562. DOI: 10.1002/jcph.243. [20] Bello CL, Smith E, RuizGarcia A, et al. A phase Ⅰ, openlabel, mass balance study of [(14)C] dacomitinib (PF00299804) in healthy male volunteers[J]. Cancer Chemother Pharmacol, 2013, 72(2): 379385. DOI: 10.1007/s0028001322079. [21] Sundaresan TK, Sequist LV, Heymach JV, et al. Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive bloodbased analyses[J]. Clin Cancer Res, 2016, 22(5): 11031110. DOI: 10.1158/10780432.CCR151031. [22] Frampton JE. Crizotinib: a review of its use in the treatment of anaplastic lymphoma kinasepositive, advanced nonsmall cell lung cancer[J]. Drugs, 2013, 73(18): 20312051. DOI: 10.1007/s402650130142z. [23] Tang SC, Nguyen LN, Sparidans RW, et al. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the Pglycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar[J]. Int J Cancer, 2014, 134(6): 14841494. DOI: 10.1002/ijc.28475. [24] Zhou WJ, Zhang X, Cheng C, et al. Crizotinib (PF02341066) reverses multidrug resistance in cancer cells by inhibiting the function of Pglycoprotein[J]. Br J Pharmacol, 2012, 166(5): 16691683. DOI: 10.1111/j.14765381.2012.01849.x. [25] Xu H, O′Gorman M, Tan W, et al. The effects of ketoconazole and rifampin on the singledose pharmacokinetics of crizotinib in healthy subjects[J]. Eur J Clin Pharmacol, 2015, 71(12): 14411449. DOI: 10.1007/s0022801519455. [26] Hamilton G, Rath B, Burghuber O. Pharmacokinetics of crizotinib in NSCLC patients[J]. Expert Opin Drug Metab Toxicol, 2015, 11(5): 835842. DOI: 10.1517/17425255.2015.1021685. [27] Johnson TR, Tan W, Goulet L, et al. Metabolism, excretion and pharmacokinetics of [14C]crizotinib following oral administration to healthy subjects[J]. Xenobiotica, 2015, 45(1): 4559. DOI: 10.3109/00498254.2014.941964. [28] Lau YY, Gu W, Lin T, et al. Effects of meal type on the oral bioavailability of the ALK inhibitor ceritinib in healthy adult subjects[J]. J Clin Pharmacol, 2016, 56(5): 559566. DOI: 10.1002/jcph.619. [29] Kort A, Sparidans RW, Wagenaar E, et al. Brain accumulation of the EML4ALK inhibitor ceritinib is restricted by Pglycoprotein (PGP/ABCB1) and breast cancer resistance protein (BCRP/ABCG2)[J]. Pharmacol Res, 2015, 102: 200207. DOI: 10.1016/j.phrs.2015.09.003. [30] Hu J, Zhang X, Wang F, et al. Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo[J]. Oncotarget, 2015, 6(42): 4464344659. DOI: 10.18632/oncotarget.5989. [31] Seto T, Kiura K, Nishio M, et al. CH5424802 (RO5424802) for patients with ALKrearranged advanced nonsmallcell lung cancer (AF001JP study): a singlearm, openlabel, phase 12 study[J]. Lancet Oncol, 2013, 14(7): 590598. DOI: 10.1016/S14702045(13)701426. [32] Kodama T, Hasegawa M, Takanashi K, et al. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases[J]. Cancer Chemother Pharmacol, 2014, 74(5): 10231028. DOI: 10.1007/s0028001425786. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | He Jiahui, Hu Qinyong. Comparative analysis of lung cancer incidence and mortality trends and risk factors in China and the United States based on GBD data [J]. Journal of International Oncology, 2024, 51(1): 29-36. |
[3] | Zuo Xiaoping, Liu Xiaochuan, Wu Xiqiang, Li Zhou, Xia Tian, Liu Guofeng. Risk factors and prediction model construction of arrhythmia in elderly patients with early lung cancer after thoracoscopic pulmonary resection [J]. Journal of International Oncology, 2023, 50(12): 711-716. |
[4] | Chen Yu, Xu Hua, Liu Hai, Chen Shixin. Construction of pathological classification prediction model for malignant pulmonary pure ground-glass nodule patients based on CT imaging [J]. Journal of International Oncology, 2023, 50(11): 655-660. |
[5] | Xie Yu, Zheng Shengnan, Huang Mingmin, Guo Aibin, Yin Zhenyu, Lin Yongjuan. Pemetrexed clinical trial for intrathecal injection chemotherapy based on cerebrospinal fluid pharmacokinetics in patients with leptomeningeal metastasis from lung adenocarcinoma [J]. Journal of International Oncology, 2023, 50(10): 585-591. |
[6] | Yang Sha, Yang Xiaohua, Wang Suhua, Xue Xiaoyan, Xu Jun. Analysis of risk factors for deep vein thrombosis of lower extremity after thoracoscopic surgery for elderly lung cancer and establishment and validation of prediction model [J]. Journal of International Oncology, 2022, 49(9): 532-536. |
[7] | Chen Huangjing, Zhu Pengfei, Zhang Qing, Chen Guifang, Yang Chunlin, He Ying. Comparative study on the clinical value of contrast-enhanced ultrasound- and CT-guided percutaneous puncture biopsy in peripheral lung masses [J]. Journal of International Oncology, 2022, 49(8): 459-463. |
[8] | Cai Gangxiang, Li Jing, Xu Bin. Advances in neoadjuvant immunotherapy for lung cancer [J]. Journal of International Oncology, 2022, 49(6): 366-370. |
[9] | Zhang Jingxian, Yi Dan, Li Xiaojiang. Application of antibody-drug conjugates in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(5): 296-301. |
[10] | Gao Min, Feng Jing, Wang Li, Zhong Hai, Wen Yuting, Wan Bing, Zhang Xiuwei. Application of microbiota in the early diagnosis and adjunctive treatment of lung cancer [J]. Journal of International Oncology, 2022, 49(4): 247-251. |
[11] | Gao Shile, Lu Donghui, Liu Meiqin, Xu Xingjun, Ma Huan, Zhang Yu. Clinical efficacy and optimal dose of apatinib combined with chemotherapy in patients with advanced non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(3): 140-145. |
[12] | Xie Hongxia, Zuo Jinhui, Liao Dongying, Deng Renfen, Yao Yang, Jia Yingjie, Li Xiaojiang, Kong Fanming. Application of PD-L1 inhibitors in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(2): 111-115. |
[13] | Huang Huayu, Song Qibin, Gong Hongyun, Song Jia. Analysis on the incidence and risk factors of pneumonia in patients with lung cancer receiving thoracic radiotherapy and immunotherapy [J]. Journal of International Oncology, 2022, 49(12): 718-723. |
[14] | Zhang Hongjiao, Jiang Jie, Huang Wei. Research progress of functional imaging-assisted radiotherapy target delineation of lung cancer with atelectasis [J]. Journal of International Oncology, 2022, 49(1): 51-55. |
[15] | Hu Ge, Su Jie, Li Qiangwei, Xu Peng, Xu Xiuli, Qian Xiaotao. Value of CD4/CD8 ratio and total B lymphocytes before radiotherapy in predicting radiation pneumonitis in patients with esophageal cancer and lung cancer [J]. Journal of International Oncology, 2021, 48(9): 523-526. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||