
Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (9): 587-591.doi: 10.3760/cma.j.cn371439-20250415-00099
• Review • Previous Articles Next Articles
Che Gen1, Wu Rihan1, Zhu Tiantian2, Dong Li1(
)
Received:2025-04-15
Revised:2025-05-01
Online:2025-09-08
Published:2025-10-21
Contact:
Dong Li
E-mail:dongli2126@126.com
Supported by:Che Gen, Wu Rihan, Zhu Tiantian, Dong Li. Mechanism of the cGAS-STING signaling pathway in non-small cell lung cancer and its targeted therapeutic strategies[J]. Journal of International Oncology, 2025, 52(9): 587-591.
| [1] | Yin ZS, Wang Z. Strategies for engineering oncolytic viruses to enhance cancer immunotherapy[J]. Front Pharmacol, 2024, 15: 1450203. DOI: 10.3389/fphar.2024.1450203. |
| [2] | Wang S, Li T, Sun H, et al. Mini-review: the distinct roles of sting signaling in tumor immunity-recent progress[J]. J Leukoc Biol, 2023, 114(2): 111-115. DOI: 10.1093/jleuko/qiad051. |
| [3] | Yue B, Gao W, Lovell JF, et al. The cGAS-STING pathway in cancer immunity: dual roles, therapeutic strategies, and clinical challenges[J]. Essays Biochem, 2025, 69(2): EBC20253006. DOI: 10.1042/EBC20253006. |
| [4] | Wei M, Li Q, Li S, et al. Multifaceted roles of cGAS-STING pathway in the lung cancer: from mechanisms to translation[J]. PeerJ, 2024, 12: e18559. DOI: 10.7717/peerj.18559. |
| [5] |
Fang L, Hao Y, Yu H, et al. Methionine restriction promotes cGAS activation and chromatin untethering through demethylation to enhance antitumor immunity[J]. Cancer Cell, 2023, 41(6): 1118-1133.e12. DOI: 10.1016/j.ccell.2023.05.005.
pmid: 37267951 |
| [6] | Wu L, Yan Y, Yuan Y, et al. Viral protease binds to nucleosomal DNA and cleaves nuclear cGAS that attenuates type Ⅰ interferon[J]. mBio, 2025, 16(4): e0339524. DOI: 10.1128/mbio.03395-24. |
| [7] |
Qiu S, Zhong X, Meng X, et al. Mitochondria-localized cGAS suppresses ferroptosis to promote cancer progression[J]. Cell Res, 2023, 33(4): 299-311. DOI: 10.1038/s41422-023-00788-1.
pmid: 36864172 |
| [8] | Xia L, Yan X, Zhang H. Mitochondrial DNA-activated cGAS-STING pathway in cancer: mechanisms and therapeutic implications[J]. Biochim Biophys Acta Rev Cancer, 2025, 1880( 1): 189249. DOI: 10.1016/j.bbcan.2024.189249. |
| [9] |
Della Corte CM, Byers LA. Evading the STING: LKB1 loss leads to STING silencing and immune escape in KRAS-mutant lung cancers[J]. Cancer Discov, 2019, 9(1): 16-18. DOI: 10.1158/2159-8290.Cd-18-1286.
pmid: 30626603 |
| [10] | Wang F, Jiang C, Hui HX, et al. cGAS regulates metabolic reprogramming independently of sting pathway in colorectal cancer[J]. Exp Cell Res, 2024, 443(1): 114316. DOI: 10.1016/j.yexcr.2024.114316. |
| [11] | Song JX, Villagomes D, Zhao H, et al. cGAS in nucleus: the link between immune response and DNA damage repair[J]. Front Immunol, 2022, 13: 1076784. DOI: 10.3389/fimmu.2022.1076784. |
| [12] | Liu X, Zheng W, Zhang L, et al. Arginine methylation-dependent cGAS stability promotes non-small cell lung cancer cell proliferation[J]. Cancer Lett, 2024, 586: 216707. DOI: 10.1016/j.canlet.2024.216707. |
| [13] |
Qian F, Xu H, Zhang Y, et al. Methionine deprivation inhibits glioma growth through downregulation of CTSL[J]. Am J Cancer Res, 2022, 12(11): 5004-5018.
pmid: 36504894 |
| [14] |
Wei F, Locasale JW. Methionine restriction and antitumor immunity[J]. Trends Cancer, 2023, 9(9): 705-706. DOI: 10.1016/j.trecan.2023.07.008.
pmid: 37517954 |
| [15] |
Xue A, Shang Y, Jiao P, et al. Increased activation of cGAS-STING pathway enhances radiosensitivity of non-small cell lung cancer cells[J]. Thorac Cancer, 2022, 13(9): 1361-1368. DOI: 10.1111/1759-7714.14400.
pmid: 35429143 |
| [16] | Bao Y, Pan Z, Zhao L, et al. BIBR1532 combined with radiotherapy induces ferroptosis in NSCLC cells and activates cGAS-STING pathway to promote anti-tumor immunity[J]. J Transl Med, 2024, 22(1): 519. DOI: 10.1186/s12967-024-05331-3. |
| [17] | Fu C, Yang C, Ni C, et al. Echinococcus granulosus cyst fluid inhibits the type Ⅰ interferon response by promoting ROS in macrophages[J]. Acta Trop, 2024, 250: 107101. DOI: 10.1016/j.actatropica.2023.107101. |
| [18] | Gan Y, Li X, Han S, et al. The cGAS/sting pathway: a novel target for cancer therapy[J]. Front Immunol, 2022, 12: 795401. DOI: 10.3389/fimmu.2021.795401. |
| [19] | Akhiani AA, Martner A. Role of phosphoinositide 3-kinase in regulation of NOX-derived reactive oxygen species in cancer[J]. Antioxidants (Basel), 2022, 12(1): 67. DOI: 10.3390/antiox12010067. |
| [20] | Liu WJ, Wang L, Zhou FM, et al. Elevated NOX4 promotes tumorigenesis and acquired EGFR-TKIs resistance via enhancing IL-8/PD-L1 signaling in NSCLC[J]. Drug Resist Updat, 2023, 70: 100987. DOI: 10.1016/j.drup.2023.100987. |
| [21] | 刘小洁, 黄俊星. NADPH氧化酶2在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(10): 618-621. DOI: 10.3760/cma.j.cn371439-20230428-00117. |
| [22] | Lin Z, Liu Y, Lin P, et al. Clinical significance of sting expression and methylation in lung adenocarcinoma based on bioinformatics analysis[J]. Sci Rep, 2022, 12(1): 13951. DOI: 10.1038/s41598-022-18278-6. |
| [23] | Nakajima S, Kaneta A, Okayama H, et al. The impact of tumor cell-intrinsic expression of cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) on the infiltration of CD8+ T cells and clinical outcomes in mismatch repair proficient/microsatellite stable colorectal cancer[J]. Cancers (Basel), 2023, 15(10): 2826. DOI: 10.3390/cancers15102826. |
| [24] | Liu Y, Gong L, Feng J, et al. Correction: Co-delivery of axitinib and PD-L1 siRNA for the synergism of vascular normalization and immune checkpoint inhibition to boost anticancer immunity[J]. J Nanobiotechnology, 2025, 23(1): 461. DOI: 10.1186/s12951-025-03532-6. |
| [25] |
Lemos H, Mohamed E, Huang L, et al. Sting promotes the growth of tumors characterized by low antigenicity via IDO activation[J]. Cancer Res, 2016, 76(8): 2076-2081. DOI: 10.1158/0008-5472.Can-15-1456.
pmid: 26964621 |
| [26] | Hu J, Sánchez-Rivera FJ, Wang Z, et al. STING inhibits the reactivation of dormant metastasis in lung adenocarcinoma[J]. Nature, 2023, 616(7958): 806-813. DOI: 10.1038/s41586-023-05880-5. |
| [27] | Bakhoum SF, Ngo B, Laughney AM, et al. Chromosomal instability drives metastasis through a cytosolic DNA response[J]. Nature, 2018, 553(7689): 467-472. DOI: 10.1038/nature25432. |
| [28] | Gao Y, Li Y, Lin Z, et al. Ataxia telangiectasia mutated kinase inhibition promotes irradiation‐induced PD‐L1 expression in tumour‐associated macrophages through IFN‐Ⅰ /JAK signalling pathway[J]. Immunology, 2022, 168(2): 346-361. DOI: 10.1111/imm.13602. |
| [29] |
Li X, Wenes M, Romero P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(7): 425-441. DOI: 10.1038/s41571-019-0203-7.
pmid: 30914826 |
| [30] | Odarenko KV, Zenkova MA, Markov AV. The nexus of inflammation-induced epithelial-mesenchymal transition and lung cancer progression: a roadmap to pentacyclic triterpenoid-based therapies[J]. Int J Mol Sci, 2023, 24(24): 17325. DOI: 10.3390/ijms242417325. |
| [31] | Chen Q, Boire A, Jin X, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer[J]. Nature, 2016, 533(7604): 493-498. DOI: 10.1038/nature18268. |
| [32] | Yang Z, Yang L, Zhang J, et al. AS602801 treatment suppresses breast cancer metastasis to the brain by interfering with gap-junction communication by regulating Cx43 expression[J]. Drug Dev Res, 2024, 85(1): e22124. DOI: 10.1002/ddr.22124. |
| [33] | Filderman JN, Taylor JL, Wang J, et al. Antagonism of regulatory ISGs enhances the anti-melanoma efficacy of sting agonists[J]. Front Immunol, 2024, 15: 1334769. DOI: 10.3389/fimmu.2024.1334769. |
| [34] | Luo J, Pang S, Hui Z, et al. Blocking tim-3 enhances the anti-tumor immunity of sting agonist ADU-S100 by unleashing CD4+ T cells through regulating type 2 conventional dendritic cells[J]. Theranostics, 2023, 13(14): 4836-4857. DOI: 10.7150/thno.86792. |
| [35] | Aldhubiab B, Almuqbil RM, Nair AB. Harnessing the power of nanocarriers to exploit the tumor microenvironment for enhanced cancer therapy[J]. Pharmaceuticals (Basel), 2025, 18(5): 746. DOI: 10.3390/ph18050746. |
| [36] | Wang Y, Li S, Hu M, et al. Universal sting mimic boosts antitumour immunity via preferential activation of tumour control signalling pathways[J]. Nat Nanotechnol, 2024, 19(6): 856-866. DOI: 10.1038/s41565-024-01624-2. |
| [37] | Zhou S, Sun Y, Wang K, et al. Polyvinylpyrrolidone-polydatin nanoparticles protect against oxaliplatin induced intestinal toxicity in vitro and in vivo[J]. Food Chem Toxicol, 2024, 184: 114427. DOI: 10.1016/j.fct.2023.114427. |
| [38] | Han D, Zhang J, Bao Y, et al. Anlotinib enhances the antitumor immunity of radiotherapy by activating cGAS/sting in non-small cell lung cancer[J]. Cell Death Discov, 2022, 8(1): 468. DOI: 10. 1038/s41420-022-01256-2. |
| [39] | Wang C, Lin X, Guan S, et al. Dihydroartemisinin attenuates radiation-induced lung injury by inhibiting the cGAS/Sting/NF-κB signaling pathway[J]. Drug Dev Res, 2025, 86(3): e70090. DOI: 10.1002/ddr.70090. |
| [40] | Song H, Chen L, Pan X, et al. Targeting tumor monocyte-intrinsic PD-L1 by rewiring sting signaling and enhancing sting agonist therapy[J]. Cancer Cell, 2025, 43(3): 503-518.e10. DOI: 10.1016/j.ccell.2025.02.014. |
| [41] | Xu N, Palmer DC, Robeson AC, et al. Sting agonist promotes CAR T cell trafficking and persistence in breast cancer[J]. J Exp Med, 2021, 218(2): e20200844. DOI: 10.1084/jem.20200844. |
| [42] | Li Y, Wu X, Fang D, et al. Informing immunotherapy with multiomics driven machine learning[J]. NPJ Digit Med, 2024, 7(1): 67. DOI: 10.1038/s41746-024-01043-6. |
| [43] | Ding Y, Wang D, Yan D, et al. Harnessing single-cell and multiomics insights: sting pathway-based predictive signature for immunotherapy response in lung adenocarcinoma[J]. Front Immunol, 2025, 16: 1575084. DOI: 10.3389/fimmu.2025.1575084. |
| [44] | Xu Y, Xiong Y. Targeting sting signaling for the optimal cancer immunotherapy[J]. Front Immunol, 2024, 15: 1482738. DOI: 10.3389/fimmu.2024.1482738. |
| [1] | Wu Songyou, Wang Gang, Wang Wenling, Dong Hongmin, Chen Weiwei, Li Xiaokai, Chen Wanghua, Zuo Kai. Prospective cohort study on the effect of abdominal circumference on the intestinal radiation dose volume and the acute intestinal toxicity in pelvic intensity modulated radiation therapy for rectal cancer patients [J]. Journal of International Oncology, 2025, 52(9): 566-575. |
| [2] | Liu Mei, Hu Yuchong, Li Fengtong, Chao Lemen, Liu Meng, Kang Linlin. Mechanism of action of SHCBP1 in malignant tumors and progress in clinical research [J]. Journal of International Oncology, 2025, 52(9): 583-586. |
| [3] | Cheng Honglei, Wang Ti, Lan Zhidong, Gong Heyi. Value of clinical indicators in predicting the efficacy of neoadjuvant therapy for esophageal cancer [J]. Journal of International Oncology, 2025, 52(9): 592-597. |
| [4] | Radiation Oncology Professional Committee of the Chinese Research Hospital Association, Hebei Society of Mathematical and Physical Medicine, Tianjin Precision Medicine Society. Expert consensus on the clinical diagnosis and treatment of post-obstructive pneumonia in newly diagnosed lung cancer patients [J]. Journal of International Oncology, 2025, 52(8): 484-494. |
| [5] | Zhao Fang, Jiang Guorong, Shi Shuyue, Xiao Jian, Ma Shaolin, Li Runpu. Observation on the therapeutic effect of atezolizumab combined with anlotinib in treating advanced non-small cell lung cancer [J]. Journal of International Oncology, 2025, 52(8): 495-501. |
| [6] | Wu Xuehui, Li Song, Liu Lian. Clinical applications of TCR sequencing in cancer immunotherapy [J]. Journal of International Oncology, 2025, 52(8): 523-527. |
| [7] | Wu Xin, Ren Haipeng. Research progress of KRASG12C inhibitors in the treatment of advanced colorectal cancer [J]. Journal of International Oncology, 2025, 52(8): 538-542. |
| [8] | Liu Qi, Qu Guobin, Zhu Jian, Wu Fan. Feasibility study of using dual-energy CT virtual non-contrast images to replace true non-contrast images in photon and proton radiotherapy dose calculations [J]. Journal of International Oncology, 2025, 52(7): 401-408. |
| [9] | Zhu Jian. Preface to the dosimetric characteristic of proton radiotherapy for tumors [J]. Journal of International Oncology, 2025, 52(7): 432-433. |
| [10] | Wu Shizhang, Hu Man, Dai Tianyuan, Li Chengqiang, Tao Cheng, Duan Jinghao, Chen Jinhu, Bai Tong, Kong Tian, Zhu Jian. Analysis of dosimetric characteristics of proton radiotherapy in 1 case of whole central nervous system tumor [J]. Journal of International Oncology, 2025, 52(7): 434-440. |
| [11] | Xu Jian, Duan Jinghao, Liu Qingzeng, Zhu Jian. Correlation study of spectral CT parameters and MRI ADC changes in proton radiotherapy for chordoma [J]. Journal of International Oncology, 2025, 52(7): 441-447. |
| [12] | Li Chengqiang, Wang Yungang, Yu Yishan, Wu Shizhang, Tao Cheng, Ma Xingmin, Dai Tianyuan, Duan Jinghao, Chen Jinhu, Bai Tong, Zhu Jian. Analysis of dosimetric characteristics of proton radiotherapy in 4 cases of breast cancer [J]. Journal of International Oncology, 2025, 52(7): 448-454. |
| [13] | Duan Jinghao, Yue Jinbo, Tao Cheng, Wu Shizhang, Li Chengqiang, Dai Tianyuan, Chen Jinhu, Bai Tong, Zhu Jian. Analysis of dosimetric characteristics of proton radiotherapy in 3 cases of abdominal and pelvic tumors [J]. Journal of International Oncology, 2025, 52(7): 455-461. |
| [14] | Zhang Yanping, Xue Jincai, Xin Yuanchun, Liu Qinjiang, Dong Fang. Research progress on nasopharyngeal carcinoma in children and adolescents [J]. Journal of International Oncology, 2025, 52(6): 337-342. |
| [15] | Zhong Xiao, Li Butuo, Wang Linlin. Research progress of radiotherapy for brain metastases from ALK-positive NSCLC [J]. Journal of International Oncology, 2025, 52(6): 374-378. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||