Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (8): 484-494.doi: 10.3760/cma.j.cn371439-20250606-00083
• Standard and Specification • Previous Articles Next Articles
Radiation Oncology Professional Committee of the Chinese Research Hospital Association, Hebei Society of Mathematical and Physical Medicine, Tianjin Precision Medicine Society
Received:
2025-06-06
Revised:
2025-07-10
Online:
2025-08-08
Published:
2025-09-15
Contact:
Sun Guogui, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China, Email: Radiation Oncology Professional Committee of the Chinese Research Hospital Association, Hebei Society of Mathematical and Physical Medicine, Tianjin Precision Medicine Society. Expert consensus on the clinical diagnosis and treatment of post-obstructive pneumonia in newly diagnosed lung cancer patients[J]. Journal of International Oncology, 2025, 52(8): 484-494.
"
项目 | 危险因素 | 说明 |
---|---|---|
一般特征 | 年龄≥65岁 | 随年龄增长,免疫功能及修复能力下降 |
吸烟史 | 基础肺功能差,气道易狭窄、通气受限 | |
免疫抑制状态(如长期使用糖皮质激素、 化疗后或合并人类免疫缺陷病毒) | 淋巴细胞减少,感染清除能力降低 | |
营养不良或体重下降>10% | 机体耐受性差,易并发感染 | |
肿瘤相关因素 | 中央型肿瘤 | 容易发生机械性阻塞,导致远端肺不张及细菌易聚集 |
肿瘤体积大或局部浸润(阻塞程度>75%) | 阻塞范围广,通气损害严重 | |
伴发肿瘤坏死或空洞形成 | 坏死组织为细菌滋生提供生长条件 | |
感染易感性 | 既往抗生素用药史/耐药菌感染 | 常规经验治疗失败,需覆盖多耐药病原体 |
反复急性加重史(≥2次/年) | 慢性阻塞性肺疾病急性加重期患者因气道高分泌状态 及菌群失调,较稳定期更易继发阻塞性肺炎 | |
肺功能状态 | FEV₁/FVC<70%;FEV₁<50%预计值 | 严重气流受限,肺泡排痰和通气功能差 |
胸部CT:大范围实变、肺不张或脓胸 | 影像上广泛病灶提示感染控制难度大 | |
PaO₂/FiO₂<300或SpO₂<90%(未吸氧) | 氧合不足,呼吸衰竭风险高 | |
心肺合并症 | 心功能不全(NYHA Ⅲ~Ⅳ级)慢性阻塞性肺疾病 | 心肺联合受累时,呼吸支持及抗感染更困难 |
糖尿病、慢性肾病、肝功能损害 | 代谢及免疫功能减弱,增加全身并发症风险 |
"
项目 | 肺癌合并阻塞性肺炎 | 社区获得性肺炎 |
---|---|---|
定义 | 由支气管内肿瘤阻塞导致气道通畅受限,引发远端肺实变和继发感染 | 患者在院外或住院≤48 h内发生的肺组织感染 |
易感人群 | 肺癌患者(特别是中央型肿瘤)、支气管狭窄历史、局部放疗后管腔狭窄 | 老年人、吸烟者、慢性心肺病、免疫功能低下者 |
病原体特点 | 兼有常见社区菌,也易并发耐药菌(耐甲氧西林金黄色葡萄球菌、 革兰阴性杆菌、厌氧菌)、真菌感染 | 以肺炎链球菌、流感嗜血杆菌、嗜肺军团菌等常见 社区菌为主 |
临床表现 | 症状隐匿或慢性进行(咳嗽、反复发热、脓痰);可有消瘦、乏力、夜汗 | 发热、咳嗽(黏痰或脓痰)、呼吸窘迫,症状出现较突然 |
影像学特征 | 阻塞侧肺叶或段肺大范围实变/肺不张,常伴空洞;肿瘤局灶在 阻塞处可见结节或软组织肿块 | 局灶或弥漫性斑片状浸润影;CT可见毛玻璃或实变 |
肺功能变化 | 严重气流受限(FEV₁/FVC<70%)、分段肺不张,需雾化或支气管镜干预 | 通常无明显气流受限;呼吸功能可快速恢复 |
实验室指标 | 白细胞、CRP、PCT常持续高位;淋巴细胞减少时提示免疫抑制 | 可有白细胞、CRP或PCT升高;多数在治疗后48~72 h下降 |
预后及并发症 | 复发率高、病程长;易并发肺不张、脓胸、多器官功能障碍,整体预后较差 | 早期诊治预后好;少数可并发脓胸、呼吸衰竭 |
"
项目 | 低危 | 中危 | 高危 |
---|---|---|---|
临床表现 | 无发热或低热(37.3~38.0 ℃) 咳痰、咳嗽症状轻;无明显呼吸困难 | 中度发热(38.1~39.0 ℃) 咳嗽咳痰较多、呼吸稍急促;活动后气促 | 高热(>39.0 ℃) 咳脓痰,气促明显,可能出现意识障碍 |
实验室及肺功能检查 | CURB-65评分0~1分;PSI:Ⅰ~Ⅱ级; 白细胞计数正常或轻度升高[(4~ 12)×10⁹/L];CRP<50 mg/L;PCT< 0.25 ng/ml;SpO₂≥94%;FEV₁≥80%预计值 | CURB-65评分2分;PSI:Ⅲ~Ⅳ级;白细 胞计数升高(>12×10⁹/L);CRP:50~ 100 mg/L;PCT:0.25~0.5 ng/ml; SpO₂:90%~94%;FEV₁:50%~79% | CURB-65评分≥3分;PSI:Ⅴ级;白细胞 计数减少或明显升高(>25×10⁹/L); CRP>100 mg/L;PCT>0.5 ng/ml; SpO₂<90%;FEV₁<50% |
影像学检查 | 局灶性阻塞性肺炎; 单侧肺段或小叶受累 | 多叶或双肺病变; 伴支气管阻塞征象 | 广泛实变或坏死,合并肺不张; 可能出现胸腔积液 |
抗感染+支持治疗 | 经验性抗生素治疗(如头孢类); 对症支持(雾化吸入) | 广谱抗生素±抗真菌治疗;对症支持 (雾化吸入、吸氧);物理排痰 | 静脉广谱抗生素+抗真菌治疗;高流量 吸氧或无创通气;重症监护支持 |
抗肿瘤治疗 | 若肿瘤可切除且肺功能可耐受,可择期手术;如没有临床感染表现,且实验室指标仅轻度波动;一般不需要延迟肺癌的治疗;感染控制稳定后1周内可考虑启动肺癌治疗 | 全身治疗应在肺炎明显改善后2周后 启动;感染控制初见效(48~72 h)后, 如临床肺部感染评分≤6分且 PCT<0.25 ng/ml,可同步进行 局部治疗(支气管镜、放疗等) | 感染控制优先,肿瘤治疗推迟或个体化 处理;若需缓解气道压迫,可在生命体征 高度稳定、感染显著缓解后实施低剂量 姑息放疗;若FEV1<40%预计值或肺一氧化碳弥散量<40%时,需慎选放疗,优先 考虑支气管介入解除阻塞;若驱动基因阳性,可在感染部分受控时进行靶向治疗 |
[1] | Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent., 2024, 4(1): 47-53. DOI:10.1016/j.jncc.2024.01.006. |
[2] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834. |
[3] | Song J, Hwang EJ, Yoon SH, et al. Emerging trends and innovations in radiologic diagnosis of thoracic diseases[J/OL]. Invest Radiol, 2025[2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/40106831/. DOI: 10.1097/RLI.0000000000001179. |
[4] | Mortensen EM, Copeland LA, Pugh MJ, et al. Diagnosis of pulmonary malignancy after hospitalization for pneumonia[J]. Am J Med, 2010, 123(1): 66-71. DOI: 10.1016/j.amjmed.2009.08.009. |
[5] | Li F, Zheng L, Xu X, et al. The impact of chronic obstructive pulmonary disease on the risk of immune-related pneumonitis in lung cancer patients undergoing immunotherapy: a systematic review and meta-analysis[J]. BMC Pulm Med, 2024, 24(1): 393. DOI: 10. 1186/s12890-024-03180-w. |
[6] | Denning DW. Global incidence and mortality of severe fungal disease[J]. Lancet Infect Dis, 2024, 24(7): e428-e438. DOI: 10.1016/S1473-3099(23)00692-8. |
[7] | Biciuşcă V, Popescu IAS, Traşcă DM, et al. Diagnosis of lung cancer by flexible fiberoptic bronchoscopy: a descriptive study[J]. Rom J Morphol Embryol, 2022, 63(2): 369-381. DOI: 10.47162/rjme.63.2.08. |
[8] | Akinosoglou KS, Karkoulias K, Marangos M. Infectious complications in patients with lung cancer[J]. Eur Rev Med Pharmacol Sci, 2013, 17(1): 8-18. |
[9] | Zhang X, Geng P, Zhang T, et al. Aceso: PICO-guided evidence summarization on medical literature[J]. IEEE J Biomed Health Inform, 2020, 24(9): 2663-2670. DOI: 10.1109/jbhi.2020.2984704. |
[10] | Diamond IR, Grant RC, Feldman BM, et al. Defining consensus: a systematic review recommends methodologic criteria for reporting of Delphi studies[J]. J Clin Epidemiol, 2014, 67(4): 401-409. DOI: 10.1016/j.jclinepi.2013.12.002. |
[11] | McDonald JR, Harrington SW, Clagett OT. Obstructive pneumonitis of neoplastic origin; an interpretation of one form of so-called atelectasis and its correlation according to presence of absence of sputum[J]. J Thorac Surg, 1949, 18(1): 97-112; disc., 122. DOI: 10.1016/s0096-5588(20)31820-1. |
[12] | Valvani A, Martin A, Devarajan A, et al. Postobstructive pneumonia in lung cancer[J]. Ann Transl Med, 2019, 7(15): 357-357. DOI: 10.21037/atm.2019.05.26. |
[13] | Yu W, Shi Y, Zheng Q, et al. Comparison between community-acquired pneumonia and post-obstructive pneumonia associated with endobronchial tumors[J]. BMC Pulm Med, 2024, 24(1): 589. DOI: 10.1186/s12890-024-03409-8. |
[14] | Evans SE, Xu Y, Tuvim MJ, et al. Inducible innate resistance of lung epithelium to infection[J]. Annu Rev Physiol, 2010, 72: 413-435. DOI: 10.1146/annurev-physiol-021909-135909. |
[15] | Yamada Y, Sekine Y, Suzuki H, et al. Trends of bacterial colonisation and the risk of postoperative pneumonia in lung cancer patients with chronic obstructive pulmonary disease[J]. Eur J Cardiothorac Surg, 2010, 37(4): 752-757. DOI: 10.1016/j.ejcts.2009.05.039. |
[16] | Mascalchi M, Luconi M. Lung cancer screening, emphysema, and COPD[J]. Chest, 2021, 159(5): 1699-1700. DOI: 10.1016/j.chest.2021.01.040. |
[17] | de-Torres JP, Celli BR. COPD detection in lung cancer screening programmes: "hitting two birds with one stone"[J]. Eur Respir J, 2022, 60(6): 2201294. DOI: 10.1183/13993003.01294-2022. |
[18] | Yang X, Wisselink HJ, Vliegenthart R, et al. Association between chest CT-defined emphysema and lung cancer: a systematic review and meta-analysis[J]. Radiology, 2022, 304(2): 322-330. DOI: 10.1148/radiol.212904. |
[19] | Kim YW. Complex relationship between bronchiectasis and lung cancer[J]. Ann Am Thorac Soc, 2022, 19(9): 1455-1456. DOI: 10.1513/AnnalsATS.202206-484ED. |
[20] | Abers MS, Sandvall BP, Sampath R, et al. Postobstructive pneumonia: an underdescribed syndrome[J]. Clin Infect Dis, 2016, 62(8): 957-961. DOI: 10.1093/cid/civ1212. |
[21] | Rolston KVI, Jamal MA, Nesher L, et al. In vitro activity of ceftaroline and comparator agents against gram-positive and gram-negative clinical isolates from cancer patients[J]. Int J Antimicrob Agents, 2017, 49(4): 416-421. DOI: 10.1016/j.ijantimicag.2016.12.016. |
[22] | Rolston KVI, Nesher L. Post-obstructive pneumonia in patients with cancer: a review[J]. Infect Dis Ther, 2018, 7(1): 29-38. DOI: 10.1007/s40121-018-0185-2. |
[23] | Principi N, Esposito S. Biomarkers in pediatric community-acquired pneumonia[J]. Int J Mol Sci, 2017, 18(2): 447. DOI: 10.3390/ijms18020447. |
[24] | Zhang X, Li Y, Chen Z, et al. Improved diagnostic accuracy with three lung tumor markers compared to applying all six markers in lung cancer diagnosis[J]. Transl Lung Cancer Res, 2024, 14(5): 1770-1785. DOI: 10.21037/tlcr-2024-84190. |
[25] | Anon. Clinical applications of blood gas analysis: a comparative review of point-of-care testing in respiratory and metabolic disorders[J]. Acute and Critical Care, 2025, 40(1): 23-31. DOI:10.4266/acc.2025.1610. |
[26] | Holmberg H, Kragsbjerg P. Association of pneumonia and lung cancer: the value of convalescent chest radiography and follow-up[J]. Scand J Infect Dis, 1993, 25(1): 93-100. DOI: 10.1080/00365549309169676. |
[27] | Macdonald C, Jayathissa S, Leadbetter M. Is post-pneumonia chest X-ray for lung malignancy useful? Results of an audit of current practice[J]. Intern Med J, 2015, 45(3): 329-334. DOI: 10.1111/imj.12699. |
[28] | Xie P, Zhao X, He X. Improve the performance of CT-based pneumonia classification via source data reweighting[J]. Sci Rep, 2023, 13(1): 9401. DOI: 10.1038/s41598-023-35938-3. |
[29] | Baselski VS, Wunderink RG. Bronchoscopic diagnosis of pneumonia[J]. Clin Microbiol Rev, 1994, 7(4): 533-558. DOI: 10.1128/cmr.7.4.533. |
[30] | Zhao Y, Jiang F, Yu H, et al. Bronchus-blocked ultrasound-guided percutaneous transthoracic needle biopsy (BUS-PTNB) for intubated patients with severe lung diseases[J]. Crit Care, 2021, 25(1): 359. DOI: 10.1186/s13054-021-03782-4. |
[31] | Huang Y, Zhang L, Zhang W, et al. Diagnostic and prognostic values of NSCLC patients with or without obstructive pneumonia after sleeve lobectomy[J]. Front Cell Infect Microbiol, 2024, 14: 1474998. DOI: 10.3389/fcimb.2024.1474998. |
[32] | Homma T, Saji H, Shimada Y, et al. Effect of preoperative single-inhaler triple therapy on pulmonary function in lung cancer patients with chronic obstructive pulmonary disease and FEV1<1.5 L[J]. Cancers (Basel), 2025, 17(11): 1803. DOI: 10.3390/cancers17111803. |
[33] | Brown PD, Lerner SA. Community-acquired pneumonia[J]. Lancet, 1998, 352(9136): 1295-1302. DOI: 10.1016/S0140-6736(98)02239-9. |
[34] | Liu YH, Wu LL, Qian JY, et al. A nomogram based on atelectasis/obstructive pneumonitis could predict the metastasis of lymph nodes and postoperative survival of pathological N0 classification in non-small cell lung cancer patients[J]. Biomedicines, 2023, 11(2): 333. DOI: 10.3390/biomedicines11020333. |
[35] | Horst C, Nair A, Janes SM. Lessons on managing pulmonary nodules from NELSON: we have come a long way[J]. Thorax, 2019, 74(5): 427-429. DOI: 10.1136/thoraxjnl-2018-212783. |
[36] | Tepper J, Johnson S, Parker C, et al. Comparing the accuracy of mini-BAL to bronchoscopic BAL in the diagnosis of pneumonia among ventilated patients: a systematic literature review[J]. J Intensive Care Med, 2023, 38(12): 1099-1107. DOI: 10.1177/08850666231193379. |
[37] | Han D, Li Z, Li R, et al. mNGS in clinical microbiology laboratories: on the road to maturity[J]. Crit Rev Microbiol, 2019, 45(5/6): 668-685. DOI: 10.1080/1040841x.2019.1681933. |
[38] | Yin Y, Zhu P, Guo Y, et al. Enhancing lower respiratory tract infection diagnosis: implementation and clinical assessment of multiplex PCR-based and hybrid capture-based targeted next-generation sequencing[J]. EBioMedicine, 2024, 107: 105307. DOI: 10.1016/j.ebiom.2024.105307. |
[39] | Jiménez-Peinado A, Laguna-Muñoz D, Jaén-Moreno MJ, et al. Respiratory disease in people with major depressive disorder: a systematic review and meta-analysis[J]. Eur Psychiatry, 2025, 68(1): e34. DOI: 10.1192/j.eurpsy.2025.13. |
[40] | Kursunel MA, Esendagli G. The untold story of IFN-γ in cancer biology[J]. Cytokine Growth Factor Rev, 2016, 31: 73-81. DOI: 10.1016/j.cytogfr.2016.07.005. |
[41] | Spillane D, Pepe C, Kasymjanova G, et al. Does pre-existing chronic obstructive pulmonary disease increase the risk of checkpoint inhibitor pneumonitis in advanced/metastatic non-small cell lung cancer treated with immune checkpoint inhibitors?[J]. Curr Oncol, 2025, 32(5): 259. DOI: 10.3390/curroncol32050259. |
[42] | Zhou X, Xu Y, Ying Y, et al. Risk factors for checkpoint inhibitor pneumonitis in lung cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis[J]. Front Immunol, 2025, 16: 1607170. DOI: 10.3389/fimmu.2025.1607170. |
[43] | Lin MX, Zang D, Liu CG, et al. Immune checkpoint inhibitor-related pneumonitis: research advances in prediction and management[J]. Front Immunol, 2024, 15: 1266850. DOI: 10.3389/fimmu.2024.1266850. |
[44] | Sun J, Hao J, Li X, et al. A real-world study on the efficacy and safety of low-dose PD-1 monoclonal antibody alone or in combination as the first-line treatment for advanced non-small cell lung cancer[J]. J Immunother Cancer, 2025, 13(6): e011622. DOI: 10.1136/jitc-2025-011622. |
[45] | Ross HJ, Kozono D, Wang XF, et al. Atezolizumab before and after chemoradiation for unresectable stage Ⅲ non-small cell lung cancer: a phase Ⅱ nonrandomized controlled trial[J]. JAMA Oncol, 2024, 10(9): 1212-1219. DOI: 10.1001/jamaoncol.2024.1897. |
[46] | Gao X, Xu N, Li Z, et al. Safety and antitumour activity of cadonilimab, an anti-PD-1/CTLA-4 bispecific antibody, for patients with advanced solid tumours (COMPASSION-03): a multicentre, open-label, phase 1b/2 trial[J]. Lancet Oncol, 2023, 24(10): 1134-1146. DOI: 10.1016/S1470-2045(23)00411-4. |
[47] | Léna H, Greillier L, Cropet C, et al. Nivolumab plus ipilimumab versus carboplatin-based doublet as first-line treatment for patients with advanced non-small-cell lung cancer aged≥70 years or with an ECOG performance status of 2 (GFPC 08-2015 ENERGY): a randomised, open-label, phase 3 study[J]. Lancet Respir Med, 2025, 13(2): 141-152. DOI: 10.1016/S2213-2600(24)00264-9. |
[48] | Wang H, Bai X, Wang Y, et al. An integrated solution of deep reinforcement learning for automatic IMRT treatment planning in non-small-cell lung cancer[J]. Front Oncol, 2023, 13: 1124458. DOI: 10.3389/fonc.2023.1124458. |
[49] | Guo L, Shen S, Harris E, et al. A tri-modality image fusion method for target delineation of brain tumors in radiotherapy[J]. PLoS One, 2014, 9(11): e112187. DOI: 10.1371/journal.pone.0112187. |
[50] | Fu X, Bi L, Kumar A, et al. Multimodal spatial attention module for targeting multimodal PET-CT lung tumor segmentation[J]. IEEE J Biomed Health Inform, 2021, 25(9): 3507-3516. DOI: 10.1109/jbhi.2021.3059453. |
[51] | Xie X, Song Y, Ye F, et al. The application of multiple metrics in deformable image registration for target volume delineation of breast tumor bed[J]. J Appl Clin Med Phys, 2022, 23(12): e13793. DOI: 10.1002/acm2.13793. |
[52] | Ma Y, Feng Z, Zhou H, et al. Optimal dose-volume histogram thresholds for radiation pneumonitis prevention in lung cancer patients receiving immunotherapy[J]. Radiat Oncol, 2025, 20(1): 60. DOI: 10.1186/s13014-025-02639-2. |
[53] | Liu L, Bao W, Yuan X, et al. Impact of omitting clinical target volume in radiotherapy for locally advanced non-small cell lung cancer: a propensity score matching analysis[J]. Transl Lung Cancer Res, 2025, 14(5): 1770-1785. DOI: 10.21037/tlcr-2025-409. |
[54] | Shao Y, Guo J, Wang J, et al. Novel in-house knowledge-based automated planning system for lung cancer treated with intensity-modulated radiotherapy[J]. Strahlenther Onkol, 2024, 200(11): 967-982. DOI: 10.1007/s00066-023-02126-1. |
[55] | Zhao H, Liu S, Wang Y, et al. Development of a volume-based algorithm for rapid optimization of rotating-gantry arc angles and lung V₅ prediction in dynamic arc radiotherapy planning: a phantom study[J]. J Appl Clin Med Phys, 2019, 20(10): e11378. |
[56] | Hsu CX, Lin KH, Wang SY, et al. Planning evaluation of a novel volume-based algorithm for personalized optimization of lung dose in VMAT for esophageal cancer[J]. Sci Rep, 2022, 12(1): 2513. DOI: 10.1038/s41598-021-04571-3. |
[57] | Watkins WT, Nourzadeh H, Siebers JV. Multiobjective, multidelivery optimization for radiation therapy treatment planning[J]. Adv Radiat Oncol, 2020, 5(2): 279-288. DOI: 10.1016/j.adro.2019.09.003. |
[58] | Wang S, Ai J, Cui P, et al. Diagnostic value and clinical application of next-generation sequencing for infections in immunosuppressed patients with corticosteroid therapy[J]. Ann Transl Med, 2020, 8(5): 227. DOI: 10.21037/atm.2020.01.30. |
[59] | Tang Y, Zhang Y, Li J. A time series driven model for early sepsis prediction based on transformer module[J]. BMC Med Res Methodol, 2024, 24(1): 23. DOI: 10.1186/s12874-023-02138-6. |
[60] | Zhu Y, Che C, Jin B, et al. Knowledge-driven drug repurposing using a comprehensive drug knowledge graph[J]. Health Informatics J, 2020, 26(4): 2737-2750. DOI: 10.1177/1460458220937101. |
[61] | Wang Y, Liu A, Yang J, et al. Clinical knowledge-guided deep reinforcement learning for sepsis antibiotic dosing recommendations[J]. Artif Intell Med, 2024, 150: 102811. DOI: 0.1016/j.artmed.2024.102811. |
[62] | Ponce-Bobadilla AV, Schmitt V, Maier CS, et al. Practical guide to SHAP analysis: explaining supervised machine learning model predictions in drug development[J]. Clinical and Translational Science, 2024, 17(11): e70056. DOI: 10.1111/cts.70056 |
[63] | Gracia Martínez JL, Pfang B, Morales Coca MÁ, et al. Implementing a closed loop clinical decision support system for sustainable preoperative care[J]. NPJ Digit Med, 2025, 8(1): 6. DOI: 10. 1038/s41746-024-01371-7. |
[1] | Wu Xuehui, Li Song, Liu Lian. Clinical applications of TCR sequencing in cancer immunotherapy [J]. Journal of International Oncology, 2025, 52(8): 523-527. |
[2] | Wu Xin, Ren Haipeng. Research progress of KRASG12C inhibitors in the treatment of advanced colorectal cancer [J]. Journal of International Oncology, 2025, 52(8): 538-542. |
[3] | Liu Qi, Qu Guobin, Zhu Jian, Wu Fan. Feasibility study of using dual-energy CT virtual non-contrast images to replace true non-contrast images in photon and proton radiotherapy dose calculations [J]. Journal of International Oncology, 2025, 52(7): 401-408. |
[4] | Li Xiaoxuan, Xia Zhipeng, Luan Rumei, Wan Yunyan, Yao Zhouhong, Lin Xinshan, Lin Dianjie. Clinical value of metabolomics in assessing the malignant risk of pulmonary nodules [J]. Journal of International Oncology, 2025, 52(7): 409-413. |
[5] | Zhu Jian. Preface to the dosimetric characteristic of proton radiotherapy for tumors [J]. Journal of International Oncology, 2025, 52(7): 432-433. |
[6] | Wu Shizhang, Hu Man, Dai Tianyuan, Li Chengqiang, Tao Cheng, Duan Jinghao, Chen Jinhu, Bai Tong, Kong Tian, Zhu Jian. Analysis of dosimetric characteristics of proton radiotherapy in 1 case of whole central nervous system tumor [J]. Journal of International Oncology, 2025, 52(7): 434-440. |
[7] | Xu Jian, Duan Jinghao, Liu Qingzeng, Zhu Jian. Correlation study of spectral CT parameters and MRI ADC changes in proton radiotherapy for chordoma [J]. Journal of International Oncology, 2025, 52(7): 441-447. |
[8] | Li Chengqiang, Wang Yungang, Yu Yishan, Wu Shizhang, Tao Cheng, Ma Xingmin, Dai Tianyuan, Duan Jinghao, Chen Jinhu, Bai Tong, Zhu Jian. Analysis of dosimetric characteristics of proton radiotherapy in 4 cases of breast cancer [J]. Journal of International Oncology, 2025, 52(7): 448-454. |
[9] | Duan Jinghao, Yue Jinbo, Tao Cheng, Wu Shizhang, Li Chengqiang, Dai Tianyuan, Chen Jinhu, Bai Tong, Zhu Jian. Analysis of dosimetric characteristics of proton radiotherapy in 3 cases of abdominal and pelvic tumors [J]. Journal of International Oncology, 2025, 52(7): 455-461. |
[10] | Zhang Yanping, Xue Jincai, Xin Yuanchun, Liu Qinjiang, Dong Fang. Research progress on nasopharyngeal carcinoma in children and adolescents [J]. Journal of International Oncology, 2025, 52(6): 337-342. |
[11] | Zhong Xiao, Li Butuo, Wang Linlin. Research progress of radiotherapy for brain metastases from ALK-positive NSCLC [J]. Journal of International Oncology, 2025, 52(6): 374-378. |
[12] | Yuan Chun, Yu Xuesong, Wang Mengchao, Zhang Shao, Huang Yanbo, Wang Chaoran, Kong Fanming, Chen Liwei. New advances in the targeted therapy of EGFR exon20ins mutant advanced NSCLC [J]. Journal of International Oncology, 2025, 52(6): 382-387. |
[13] | Yi Yan, Li Baosheng. Progress in individualized, precise and comprehensive treatment of esophageal cancer [J]. Journal of International Oncology, 2025, 52(5): 257-261. |
[14] | He Wenwu, Han Yongtao. Surgical treatment for esophageal cancer: a comprehensive narrative review [J]. Journal of International Oncology, 2025, 52(5): 262-267. |
[15] | Lyu Xiaoyan, Wang Yuan, Wang Jun. Advances in precision radiotherapy for esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2025, 52(5): 268-272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||