Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (10): 608-611.doi: 10.3760/cma.j.cn371439-20220609-00120
• Reviews • Previous Articles Next Articles
Zhou Changqun1, Guan Xiaoyan1,2, Liu Jianguo2, Yue Chaoyi3, Liao Chengcheng1,2()
Received:
2022-06-09
Revised:
2022-06-18
Online:
2022-10-08
Published:
2022-12-01
Contact:
Liao Chengcheng
E-mail:lcc_950330@163.com
Supported by:
Zhou Changqun, Guan Xiaoyan, Liu Jianguo, Yue Chaoyi, Liao Chengcheng. Research progress on the malignant transformation of oral submucosal fibrosis[J]. Journal of International Oncology, 2022, 49(10): 608-611.
[1] |
Mello FW, Miguel AFP, Dutra KL, et al. Prevalence of oral potentially malignant disorders: a systematic review and meta-analysis[J]. J Oral Pathol Med, 2018, 47(7): 633-640. DOI: 10.1111/jop.12726.
doi: 10.1111/jop.12726 pmid: 29738071 |
[2] |
Shih YH, Wang TH, Shieh TM, et al. Oral submucous fibrosis: a review on etiopathogenesis, diagnosis, and therapy[J]. Int J Mol Sci, 2019, 20(12): 2940. DOI: 10.3390/ijms20122940.
doi: 10.3390/ijms20122940 |
[3] |
Wu YH, Lin PY, Yang JH, et al. Significantly higher serum tumor marker levels in patients with oral submucous fibrosis[J]. J Dent Sci, 2021, 16(3): 846-853. DOI: 10.1016/j.jds.2021.02.009.
doi: 10.1016/j.jds.2021.02.009 |
[4] |
Oliveira NG, Ramos DL, Dinis-Oliveira RJ. Genetic toxicology and toxicokinetics of arecoline and related areca nut compounds: an updated review[J]. Arch Toxicol, 2021, 95(2): 375-393. DOI: 10.1007/s00204-020-02926-9.
doi: 10.1007/s00204-020-02926-9 pmid: 33097969 |
[5] |
Islam S, Uehara O, Matsuoka H, et al. DNA hypermethylation of sirtuin 1 (SIRT1) caused by betel quid chewing—a possible predictive biomarker for malignant transformation[J]. Clin Epigenetics, 2020, 12(1): 12. DOI: 10.1186/s13148-019-0806-y.
doi: 10.1186/s13148-019-0806-y |
[6] |
Yao M, Li J, Yuan S, et al. Role of the arecoline/YAP1/BMP4 pathway in promoting endothelial-mesenchymal transition in oral submucous fibrosis[J]. J Oral Pathol Med, 2020, 49(4): 305-310. DOI: 10.1111/jop.12945.
doi: 10.1111/jop.12945 pmid: 31397922 |
[7] |
Zheng L, Guan ZJ, Pan WT, et al. Tanshinone suppresses arecoline-induced epithelial-mesenchymal transition in oral submucous fibrosis by epigenetically reactivating the p53 pathway[J]. Oncol Res, 2018, 26(3): 483-494. DOI: 10.3727/096504017X14941825760362.
doi: 10.3727/096504017X14941825760362 pmid: 28550687 |
[8] |
Chen SY, Chang YL, Liu ST, et al. Differential cytotoxicity mechanisms of copper complexed with disulfiram in oral cancer cells[J]. Int J Mol Sci, 2021, 22(7): 3711. DOI: 10.3390/ijms22073711.
doi: 10.3390/ijms22073711 |
[9] |
Tekade SA, Chaudhary MS, Tekade SS, et al. Early stage oral submucous fibrosis is characterized by increased vascularity as opposed to advanced stages[J]. J Clin Diagn Res, 2017, 11(5): ZC92-ZC96. DOI: 10.7860/JCDR/2017/25800.9948.
doi: 10.7860/JCDR/2017/25800.9948 |
[10] |
Pammar C, Nayak RS, Kotrashetti VS, et al. Comparison of microvessel density using CD34 and CD105 in oral submucous fibrosis and its correlation with clinicopathological features: an immunohistochemical study[J]. J Cancer Res Ther, 2018, 14(5): 983-988. DOI: 10.4103/0973-1482.181186.
doi: 10.4103/0973-1482.181186 pmid: 30197335 |
[11] |
Tom A, Baghirath V, Krishna B, et al. Ultrastructural changes of collagen in different histopathological grades of oral submucous fibrosis[J]. J Pharm Bioallied Sci, 2019, 11(Suppl 2): S309-S313. DOI: 10.4103/JPBS.JPBS_20_19.
doi: 10.4103/JPBS.JPBS_20_19 |
[12] |
Rashid M, Zadeh LR, Baradaran B, et al. Up-down regulation of HIF-1α in cancer progression[J]. Gene, 2021, 798: 145796. DOI: 10.1016/j.gene.2021.145796.
doi: 10.1016/j.gene.2021.145796 |
[13] |
Cheng RH, Wang YP, Chang JY, et al. Genetic susceptibility and protein expression of extracellular matrix turnover-related genes in oral submucous fibrosis[J]. Int J Mol Sci, 2020, 21(21): 8104. DOI: 10.3390/ijms21218104.
doi: 10.3390/ijms21218104 |
[14] |
Anura A, Kazi A, Pal M, et al. Endorsing cellular competitiveness in aberrant epithelium of oral submucous fibrosis progression: neighbourhood analysis of immunohistochemical attributes[J]. Histochem Cell Biol, 2018, 150(1): 61-75. DOI: 10.1007/s00418-018-1671-z.
doi: 10.1007/s00418-018-1671-z pmid: 29687243 |
[15] |
Zhang L, Tan J, Liu YP, et al. Curcumin relieves the arecoline-induced fibrosis of oral mucosal fibroblasts via inhibiting HIF-1α/TGF-β/CTGF signaling pathway: an in vitro study[J]. Toxicol Res (Camb), 2021, 10(3): 631-638. DOI: 10.1093/toxres/tfab046.
doi: 10.1093/toxres/tfab046 |
[16] |
Xie C, Feng H, Zhong L, et al. Proliferative ability and accumulation of cancer stem cells in oral submucous fibrosis epithelium[J]. Oral Dis. 2020, 26(6): 1255-1264. DOI: 10.1111/odi.13347.
doi: 10.1111/odi.13347 |
[17] |
Patil S, Sarode SC, Ashi H, et al. Triphala extract negates arecoline-induced senescence in oral mucosal epithelial cells in vitro[J]. Saudi J Biol Sci, 2021, 28(4): 2223-2228. DOI: 10.1016/j.sjbs.2021.01.011.
doi: 10.1016/j.sjbs.2021.01.011 pmid: 33911939 |
[18] |
Nag R, Paul RR, Pal M, et al. Epithelial distribution of E-cadherin, p63, and mitotic figures in ApoTome images to determine the oncogenic potentiality of oral submucous fibrosis[J]. Microsc Microanal, 2020, 26(6): 1198-1210. DOI: 10.1017/S143192762 0024538.
doi: 10.1017/S1431927620024538 pmid: 33050978 |
[19] |
Birch J, Gil J. Senescence and the SASP: many therapeutic avenues[J]. Genes Dev, 2020, 34(23/24): 1565-1576. DOI: 10.1101/gad.343129.120.
doi: 10.1101/gad.343129.120 |
[20] |
Sharma M, Hunter KD, Fonseca FP, et al. Emerging role of cellular senescence in the pathogenesis of oral submucous fibrosis and its malignant transformation[J]. Head Neck, 2021, 43(10): 3153-3164. DOI: 10.1002/hed.26805.
doi: 10.1002/hed.26805 |
[21] |
Zhu B, Jiang Q, Que G, et al. Role of autophagy and apoptosis in atrophic epithelium in oral submucous fibrosis[J]. J Oral Sci, 2020, 62(2): 184-188. DOI: 10.2334/josnusd.19-0170.
doi: 10.2334/josnusd.19-0170 pmid: 32132327 |
[22] |
Wang J, Yang L, You J, et al. Platelet-derived growth factor regulates the biological behavior of oral mucosal fibroblasts by inducing cell autophagy and its mechanism[J]. J Inflamm Res, 2021, 14: 3405-3417. DOI: 10.2147/JIR.S313910.
doi: 10.2147/JIR.S313910 pmid: 34305405 |
[23] |
Dai Z, Zhu B, Yu H, et al. Role of autophagy induced by arecoline in angiogenesis of oral submucous fibrosis[J]. Arch Oral Biol, 2019, 102: 7-15. DOI: 10.1016/j.archoralbio.2019.03.021.
doi: S0003-9969(19)30061-5 pmid: 30951892 |
[24] |
Kumari P, Debta P, Dixit A. Oral potentially malignant disorders: etiology, pathogenesis, and transformation into oral cancer[J]. Front Pharmacol, 2022, 13: 825266. DOI: 10.3389/fphar.2022.825266.
doi: 10.3389/fphar.2022.825266 |
[25] |
Siriwardena BSMS, Jayawardena KLTD, Senarath NH, et al. An evaluation of clinical and histopathological aspects of patients with oral submucous fibrosis in the background of oral squamous cell carcinoma[J]. Biomed Res Int, 2018, 2018: 4154165. DOI: 10.1155/2018/4154165.
doi: 10.1155/2018/4154165 |
[26] |
Mukherjee S, Katarkar A, Dhariwal R, et al. Effect of lysyl oxidase G473 A polymorphism on lysyl oxidase and total soluble collagen expression in oral submucous fibrosis[J]. Asian Pac J Cancer Prev, 2021, 22(8): 2493-2499. DOI: 10.31557/APJCP.2021.22.8.2493.
doi: 10.31557/APJCP.2021.22.8.2493 |
[27] |
Monteiro R, Hallikeri K, Sudhakaran A. PTEN and α-SMA expression and diagnostic role in oral submucous fibrosis and oral squamous cell carcinoma with concomitant oral submucous fibrosis[J]. J Oral Maxillofac Res, 2021, 12(1): e3. DOI: 10.5037/jomr.2021.12103.
doi: 10.5037/jomr.2021.12103 |
[28] |
Zhou S, Zhu Y, He Z, et al. Long non-coding RNA expression profile associated with malignant progression of oral submucous fibrosis[J]. J Oncol, 2019, 2019: 6835176. DOI: 10.1155/2019/6835176.
doi: 10.1155/2019/6835176 |
[29] |
Kavitha L, Ranganathan K, Shyam S, et al. Immunohistochemical biomarkers in oral submucous fibrosis: a scoping review[J]. J Oral Pathol Med, 2022, 51(7): 594-602. DOI: 10.1111/jop.13280.
doi: 10.1111/jop.13280 |
[30] |
朱蓉, 翦新春, 刘德裕, 等. PTPRZ1在口腔黏膜下纤维性变癌变中的表达及临床意义[J]. 上海口腔医学, 2017, 26(2): 198-203. DOI: 10.19439/j.sjos.2017.02.015.
doi: 10.19439/j.sjos.2017.02.015 |
[31] |
Xia Z, Ouyang D, Li Q, et al. The expression, functions, interactions and prognostic values of PTPRZ1: a review and bioinformatic analysis[J]. J Cancer, 2019, 10(7): 1663-1674. DOI: 10.7150/jca.28231.
doi: 10.7150/jca.28231 pmid: 31205522 |
[32] |
Ma L, Shen T, Peng H, et al. Overexpression of PTPRZ1 regulates p120/β-catenin phosphorylation to promote carcinogenesis of oral submucous fibrosis[J]. J Oncol, 2022, 2022: 2352360. DOI: 10.1155/2022/2352360.
doi: 10.1155/2022/2352360 |
[33] |
Mao T, Xiong H, Hu X, et al. DEC1: a potential biomarker of malignant transformation in oral leukoplakia[J]. Braz Oral Res, 2020, 34: e052. DOI: 10.1590/1807-3107bor-2020.vol34.0052.
doi: 10.1590/1807-3107bor-2020.vol34.0052 pmid: 32578762 |
[34] |
Yang L, Zeng L, Wang Z, et al. Differentiated embryo chondrocyte 1, induced by hypoxia-inducible factor 1α, promotes cell migration in oral squamous cell carcinoma cell lines[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2022, 133(2): 199-206. DOI: 10.1016/j.oooo.2021.08.022.
doi: 10.1016/j.oooo.2021.08.022 |
[35] |
Hu X, Wang W, Hu Y, et al. Overexpression of DEC1 in the epithelium of OSF promotes mesenchymal transition via activating FAK/Akt signal axis[J]. J Oral Pathol Med, 2022, 51(9): 780-790. DOI: 10.1111/jop.13350.
doi: 10.1111/jop.13350 |
[36] |
Jishnu PV, Shenoy SU, Sharma M, et al. Comprehensive analysis of microRNAs and their target genes in oral submucous fibrosis[J]. Oral Dis, 2022, In press. DOI: 10.1111/odi.14219.
doi: 10.1111/odi.14219 |
[37] |
Yang HW, Yu CC, Hsieh PL, et al. Arecoline enhances miR-21 to promote buccal mucosal fibroblasts activation[J]. J Formos Med Assoc, 2021, 120(4): 1108-1113. DOI: 10.1016/j.jfma.2020.10.019.
doi: 10.1016/j.jfma.2020.10.019 |
[38] |
Liao YW, Tsai LL, Lee YH, et al. miR-21 promotes the fibrotic properties in oral mucosa through targeting PDCD4[J]. J Dent Sci, 2022, 17(2): 677-682. DOI: 10.1016/j.jds.2021.09.004.
doi: 10.1016/j.jds.2021.09.004 |
[39] |
Chang C, Wang H, Liu J, et al. Porphyromonas gingivalis infection promoted the proliferation of oral squamous cell carcinoma cells through the miR-21/PDCD4/AP-1 negative signaling pathway[J]. ACS Infect Dis, 2019, 5(8): 1336-1347. DOI: 10.1021/acsinfecdis.9b00032.
doi: 10.1021/acsinfecdis.9b00032 pmid: 31243990 |
[1] | Shi Yu, Chen Xi, Xu Mengqi, Zhang Yingying, Ji Honghai, Jiang Yingying. Effects of PSIP1 gene silencing on migration and invasion of oral squamous cell carcinoma cells [J]. Journal of International Oncology, 2022, 49(3): 129-133. |
[2] | Yang Fan, Guan Xiaoyan, Liu Jianguo, Xiao Linlin, Yue Chaoyi, Long Qian, Liao Chengcheng. Research progress of FOXO1 in oral squamous cell carcinoma [J]. Journal of International Oncology, 2022, 49(10): 612-614. |
[3] | LIN Jian-Ying, YANG Xi-Hong, GUO Hai-Peng, XU Man-Bin, XU Shao-Wei, PENG Han-Wei. Application of near infrared fluorescence imaging with indocyanine green in sentinel node biopsy for cN0 oral carcinoma [J]. Journal of International Oncology, 2016, 43(2): 86-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||