Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (4): 225-230.doi: 10.3760/cma.j.cn371439-20200722-00045
• Reviews • Previous Articles Next Articles
Wu Hansheng1,2,3, Huang Shujie2,4, Zhuang Weitao2,4, Ding Yu2,3, Gao Zhen2,3, Qiao Guibin2,3,4()
Received:
2020-07-22
Revised:
2020-12-07
Online:
2021-04-08
Published:
2021-06-18
Contact:
Qiao Guibin
E-mail:guibinqiao@126.com
Supported by:
Wu Hansheng, Huang Shujie, Zhuang Weitao, Ding Yu, Gao Zhen, Qiao Guibin. m6A methylation modification and lung cancer[J]. Journal of International Oncology, 2021, 48(4): 225-230.
[1] | Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update[J]. Nucleic Acids Res, 2018, 46(D1):D303-D307. DOI: 10.1093/nar/gkx1030. |
[2] |
Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2):93-95. DOI: 10.1038/nchembio.1432.
doi: 10.1038/nchembio.1432 |
[3] |
Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016, 537(7620):369-373. DOI: 10.1038/nature19342.
doi: 10.1038/nature19342 |
[4] | Knuckles P, Lence T, Haussmann IU, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d [J]. Genes Dev, 2018, 32(5-6):415-429. DOI: 10.1101/gad.309146.117. |
[5] |
Chen XY, Zhang J, Zhu JS. The role of m6A RNA methylation in human cancer[J]. Mol Cancer, 2019, 18(1):103. DOI: 10.1186/s12943-019-1033-z.
doi: 10.1186/s12943-019-1033-z |
[6] |
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1):18-29. DOI: 10.1016/j.molcel.2012.10.015.
doi: 10.1016/j.molcel.2012.10.015 |
[7] |
Du H, Zhao Y, He J, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex[J]. Nat Commun, 2016, 7:12626. DOI: 10.1038/ncomms12626.
doi: 10.1038/ncomms12626 |
[8] |
Xiao W, Adhikari S, Dahal U, et al. Nuclear m(66)A reader YTHDC1 regulates mRNA splicing[J]. Mol Cell, 2016, 61(4):507-519. DOI: 10.1016/j.molcel.2016.01.012.
doi: 10.1016/j.molcel.2016.01.012 |
[9] |
Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015, 161(6):1388-1399. DOI: 10.1016/j.cell.2015.05.014.
doi: 10.1016/j.cell.2015.05.014 |
[10] |
Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J]. Cell Res, 2017, 27(3):315-328. DOI: 10.1038/cr.2017.15.
doi: 10.1038/cr.2017.15 |
[11] |
Huang H, Weng H, Sun W, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation [J]. Nat Cell Biol, 2018, 20(3):285-295. DOI: 10.1038/s41556-018-0045-z.
doi: 10.1038/s41556-018-0045-z |
[12] |
Liu N, Dai Q, Zheng G, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540):560-564. DOI: 10.1038/nature14234.
doi: 10.1038/nature14234 |
[13] |
Meyer KD, Patil DP, Zhou J, et al. 5'UTR m(6)A promotes cap-independent translation[J]. Cell, 2015, 163(4):999-1010. DOI: 10.1016/j.cell.2015.10.012.
doi: 10.1016/j.cell.2015.10.012 pmid: 26593424 |
[14] |
Lin S, Choe J, Du P, et al. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells[J]. Mol Cell, 2016, 62(3):335-345. DOI: 10.1016/j.molcel.2016.03.021.
doi: 10.1016/j.molcel.2016.03.021 |
[15] |
Wei W, Huo B, Shi X. miR- 600 inhibits lung cancer via down-regulating the expression of METTL3[J]. Cancer Manag Res, 2019, 11:1177-1187. DOI: 10.2147/cmar.s181058.
doi: 10.2147/CMAR |
[16] |
Zhou R, Gao Y, Lv D, et al. METTL3 mediated m6A modification plays an oncogenic role in cutaneous squamous cell carcinoma by regulating ΔNp63[J]. Biochem Biophys Res Commun, 2019, 515(2):310-317. DOI: 10.1016/j.bbrc.2019.05.155.
doi: 10.1016/j.bbrc.2019.05.155 |
[17] |
Cheng M, Sheng L, Gao Q, et al. The m6A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network[J]. Oncogene, 2019, 38(19):3667-3680. DOI: 10.1038/s41388-019-0683-z.
doi: 10.1038/s41388-019-0683-z |
[18] |
Du M, Zhang Y, Mao Y, et al. MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA[J]. Biochem Biophys Res Commun, 2017, 482(4):582-589. DOI: 10.1016/j.bbrc.2016.11.077.
doi: 10.1016/j.bbrc.2016.11.077 |
[19] |
Wanna-Udom S, Terashima M, Lyu H, et al. The m6A methyltransferase METTL3 contributes to transforming growth factor-beta-induced epithelial-mesenchymal transition of lung cancer cells through the regulation of JUNB[J]. Biochem Biophys Res Commun, 2020, 524(1):150-155. DOI: 10.1016/j.bbrc.2020.01.042.
doi: 10.1016/j.bbrc.2020.01.042 |
[20] | Zhang P, He Q, Lei Y, et al. m6A-mediated ZNF750 repression facilitates nasopharyngeal carcinoma progression[J]. Cell Death Dis, 2018, 9(12): 1169. DOI: 10.1038/s41419-018-1224-3. |
[21] |
Liu J, Eckert MA, Harada BT, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer[J]. Nat Cell Biol, 2018, 20(9):1074-1083. DOI: 10.1038/s41556-018-0174-4.
doi: 10.1038/s41556-018-0174-4 |
[22] |
Liu Y, Guo X, Zhao M, et al. Contributions and prognostic values of m6A RNA methylation regulators in non-small-cell lung cancer[J]. J Cell Physiol, 2020, 235(9):6043-6057. DOI: 10.1002/jcp.29531.
doi: 10.1002/jcp.v235.9 |
[23] |
Weng H, Huang H, Wu H, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification [J]. Cell Stem Cell, 2018, 22(2):191-205,e9. DOI: 10.1016/j.stem.2017.11.016.
doi: 10.1016/j.stem.2017.11.016 |
[24] |
Liu J, Ren D, Du Z, et al. m6A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression[J]. Biochem Biophys Res Commun, 2018, 502(4):456-464. DOI: 10.1016/j.bbrc.2018.05.175.
doi: 10.1016/j.bbrc.2018.05.175 |
[25] |
Li J, Han Y, Zhang H, et al. The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA[J]. Biochem Biophys Res Commun, 2019, 512(3):479-485. DOI: 10.1016/j.bbrc.2019.03.093.
doi: 10.1016/j.bbrc.2019.03.093 |
[26] |
Ding Y, Qi N, Wang K, et al. FTO facilitates lung adenocarcinoma cell progression by activating cell migration through mRNA demethy-lation[J]. Onco Targets Ther, 2020, 13:1461-1470. DOI: 10.2147/ott.s231914.
doi: 10.2147/OTT |
[27] |
Jin D, Guo J, Wu Y, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC[J]. Mol Cancer, 2020, 19(1): 40. DOI: 10.1186/s12943-020-01161-1.
doi: 10.1186/s12943-020-01161-1 |
[28] |
Zhu Z, Qian Q, Zhao X, et al. N6-methyladenosine ALKBH5 promotes non-small cell lung cancer progress by regulating TIMP3 stabi-lity[J]. Gene, 2020, 731: 144348. DOI: 10.1016/j.gene.2020.144348.
doi: 10.1016/j.gene.2020.144348 |
[29] |
Chao Y, Shang J, Ji W. ALKBH5-m6A-FOXM1 signaling axis promotes proliferation and invasion of lung adenocarcinoma cells under intermittent hypoxia [J]. Biochem Biophys Res Commun, 2020, 521(2):499-506. DOI: 10.1016/j.bbrc.2019.10.145.
doi: 10.1016/j.bbrc.2019.10.145 |
[30] |
Zhuang Z, Chen L, Mao Y, et al. Diagnostic, progressive and prognostic performance of m6A methylation RNA regulators in lung adenocarcinoma[J]. Int J Biol Sci, 2020, 16(11):1785-1797. DOI: 10.7150/ijbs.39046.
doi: 10.7150/ijbs.39046 |
[31] |
Li Z, Weng H, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase[J]. Cancer Cell, 2017, 31(1):127-141. DOI: 10.1016/j.ccell.2016.11.017.
doi: 10.1016/j.ccell.2016.11.017 |
[32] |
Vu LP, Pickering BF, Cheng Y, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells[J]. Nat Med, 2017, 23(11):1369-1376. DOI: 10.1038/nm.4416.
doi: 10.1038/nm.4416 |
[33] |
Barbieri I, Tzelepis K, Pandolfini L, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control[J]. Nature, 2017, 552(7683):126-131. DOI: 10.1038/nature24678.
doi: 10.1038/nature24678 |
[34] |
Zhou S, Bai ZL, Xia D, et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation[J]. Mol Carcinog, 2018, 57(5):590-597. DOI: 10.1002/mc.22782.
doi: 10.1002/mc.v57.5 |
[35] |
Niu Y, Lin Z, Wan A, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3[J]. Mol Cancer, 2019, 18(1):46. DOI: 10.1186/s12943-019-1004-4.
doi: 10.1186/s12943-019-1004-4 pmid: 30922314 |
[36] |
Rong ZX, Li Z, He JJ, et al. Downregulation of fat mass and obesity associated (FTO) promotes the progression of intrahepatic cholangiocarcinoma[J]. Front Oncol, 2019, 9:369. DOI: 10.3389/fonc.2019.00369.
doi: 10.3389/fonc.2019.00369 |
[37] |
He Y, Hu H, Wang Y, et al. ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methy-lation[J]. Cell Physiol Biochem, 2018, 48(2):838-846. DOI: 10.1159/000491915.
doi: 10.1159/000491915 |
[38] | Zhang Y, Liu X, Liu L, et al. Expression and prognostic significance of m6A-related genes in lung adenocarcinoma[J]. Med Sci Monit, 2020, 26:e919644. DOI: 10.12659/msm.919644. |
[39] |
Shi Y, Fan S, Wu M, et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression[J]. Nat Commun, 2019, 10(1): 4892. DOI: 10.1038/s41467-019-12801-6.
doi: 10.1038/s41467-019-12801-6 |
[40] |
Sheng H, Li Z, Su S, et al. YTH domain family 2 promotes lung cancer cell growth by facilitating 6-phosphogluconate dehydrogenase mRNA translation[J]. Carcinogenesis, 2020, 41(5):541-550. DOI: 10.1093/carcin/bgz152.
doi: 10.1093/carcin/bgz152 pmid: 31504235 |
[41] | Shi R, Yu X, Wang Y, et al. Expression profile, clinical significance, and biological function of insulin-like growth factor 2 messenger RNA-binding proteins in non-small cell lung cancer[J]. Tumour Biol, 2017, 39(4): 1010428317695928. DOI: 10.1177/1010428317695928. |
[42] |
Rosenfeld YB, Krumbein M, Yeffet A, et al. VICKZ1 enhances tumor progression and metastasis in lung adenocarcinomas in mice[J]. Oncogene, 2019, 38(21):4169-4181. DOI: 10.1038/s41388-019-0715-8.
doi: 10.1038/s41388-019-0715-8 |
[43] | Wang D, Jia Y, Zheng W, et al. Overexpression of eIF3D in lung adenocarcinoma is a new independent prognostic marker of poor survival[J]. Dis Markers, 2019, 2019:6019637. DOI: 10.1155/2019/6019637. |
[44] |
Tian Y, Zhao K, Yuan L, et al. EIF3B correlates with advanced disease stages and poor prognosis, and it promotes proliferation and inhibits apoptosis in non-small cell lung cancer[J]. Cancer Biomark, 2018, 23(2):291-300. DOI: 10.3233/CBM-181628.
doi: 10.3233/CBM-181628 pmid: 30198870 |
[45] |
Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5[J]. Nucleic Acids Res, 2015, 43(1):373-384. DOI: 10.1093/nar/gku1276.
doi: 10.1093/nar/gku1276 |
[46] |
Hu Y, Wang S, Liu J, et al. New sights in cancer: component and function of N6-methyladenosine modification[J]. Biomed Pharmacother, 2020, 122:109694. DOI: 10.1016/j.biopha.2019.109694.
doi: 10.1016/j.biopha.2019.109694 |
[47] | Yang S, Wei J, Cui YH, et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade[J]. Nat Commun, 2019, 10(1): 2782. DOI: 10.1038/s41467-019-10669-0. |
[48] | Jin D, Guo J, Wu Y, et al. m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis[J]. J Hematol Oncol, 2019, 12(1): 135. DOI: 10.1186/s13045-019-0830-6. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | He Jiahui, Hu Qinyong. Comparative analysis of lung cancer incidence and mortality trends and risk factors in China and the United States based on GBD data [J]. Journal of International Oncology, 2024, 51(1): 29-36. |
[3] | Zuo Xiaoping, Liu Xiaochuan, Wu Xiqiang, Li Zhou, Xia Tian, Liu Guofeng. Risk factors and prediction model construction of arrhythmia in elderly patients with early lung cancer after thoracoscopic pulmonary resection [J]. Journal of International Oncology, 2023, 50(12): 711-716. |
[4] | Chen Yu, Xu Hua, Liu Hai, Chen Shixin. Construction of pathological classification prediction model for malignant pulmonary pure ground-glass nodule patients based on CT imaging [J]. Journal of International Oncology, 2023, 50(11): 655-660. |
[5] | Yang Sha, Yang Xiaohua, Wang Suhua, Xue Xiaoyan, Xu Jun. Analysis of risk factors for deep vein thrombosis of lower extremity after thoracoscopic surgery for elderly lung cancer and establishment and validation of prediction model [J]. Journal of International Oncology, 2022, 49(9): 532-536. |
[6] | Chen Huangjing, Zhu Pengfei, Zhang Qing, Chen Guifang, Yang Chunlin, He Ying. Comparative study on the clinical value of contrast-enhanced ultrasound- and CT-guided percutaneous puncture biopsy in peripheral lung masses [J]. Journal of International Oncology, 2022, 49(8): 459-463. |
[7] | Cai Gangxiang, Li Jing, Xu Bin. Advances in neoadjuvant immunotherapy for lung cancer [J]. Journal of International Oncology, 2022, 49(6): 366-370. |
[8] | Zhang Jingxian, Yi Dan, Li Xiaojiang. Application of antibody-drug conjugates in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(5): 296-301. |
[9] | Gao Min, Feng Jing, Wang Li, Zhong Hai, Wen Yuting, Wan Bing, Zhang Xiuwei. Application of microbiota in the early diagnosis and adjunctive treatment of lung cancer [J]. Journal of International Oncology, 2022, 49(4): 247-251. |
[10] | Gao Shile, Lu Donghui, Liu Meiqin, Xu Xingjun, Ma Huan, Zhang Yu. Clinical efficacy and optimal dose of apatinib combined with chemotherapy in patients with advanced non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(3): 140-145. |
[11] | Xie Hongxia, Zuo Jinhui, Liao Dongying, Deng Renfen, Yao Yang, Jia Yingjie, Li Xiaojiang, Kong Fanming. Application of PD-L1 inhibitors in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(2): 111-115. |
[12] | Huang Huayu, Song Qibin, Gong Hongyun, Song Jia. Analysis on the incidence and risk factors of pneumonia in patients with lung cancer receiving thoracic radiotherapy and immunotherapy [J]. Journal of International Oncology, 2022, 49(12): 718-723. |
[13] | Zhang Hongjiao, Jiang Jie, Huang Wei. Research progress of functional imaging-assisted radiotherapy target delineation of lung cancer with atelectasis [J]. Journal of International Oncology, 2022, 49(1): 51-55. |
[14] | Hu Ge, Su Jie, Li Qiangwei, Xu Peng, Xu Xiuli, Qian Xiaotao. Value of CD4/CD8 ratio and total B lymphocytes before radiotherapy in predicting radiation pneumonitis in patients with esophageal cancer and lung cancer [J]. Journal of International Oncology, 2021, 48(9): 523-526. |
[15] | Wang Jun, Zhao Xia, Li Haifei, Zhang Cheng. Clinic diagnostic value of MSCT imaging features in nodular lung adenocarcinoma subtype [J]. Journal of International Oncology, 2021, 48(9): 537-543. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||