
Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (10): 633-636.doi: 10.3760/cma.j.cn371439-20241108-00108
• Review • Previous Articles Next Articles
Received:2024-11-08
Revised:2025-09-18
Online:2025-10-08
Published:2025-11-12
Contact:
Jia Junmei
E-mail:jiajunmei1972@163.com
Fan Yuyu, Jia Junmei. Research progress on the signaling pathways regulated by microRNAs in cancer cachexia muscle atrophy[J]. Journal of International Oncology, 2025, 52(10): 633-636.
| [1] |
Sakaguchi T, Maeda K, Takeuchi T, et al. Low handgrip strength as a marker of severity in the diagnostic criteria for cancer cachexia[J]. Clin Nutr ESPEN, 2024, 64: 435-440. DOI: 10.1016/j.clnesp.2024.10.162.
pmid: 39489299 |
| [2] | Freire PP, Fernandez GJ, Cury SS, et al. The pathway to cancer cachexia: microRNA-regulated networks in muscle wasting based on integrative meta-analysis[J]. Int J Mol Sci, 1962, 20(8): 1962. DOI: 10.3390/ijms20081962. |
| [3] | Sannicandro AJ, McDonagh B, Goljanek-Whysall K. MicroRNAs as potential therapeutic targets for muscle wasting during cancer cachexia[J]. Curr Opin Clin Nutr Metab Care, 2020, 23(3): 157-163. DOI: 10.1097/MCO.0000000000000645. |
| [4] | Mirzoev TM. Skeletal muscle recovery from disuse atrophy: protein turnover signaling and strategies for accelerating muscle regrowth[J]. Int J Mol Sci, 2020, 21(21): 7940. DOI: 10.3390/ijms21217940. |
| [5] | Vainshtein A, Sandri M. Signaling pathways that control muscle mass[J]. Int J Mol Sci, 2020, 21(13): 4759. DOI: 10.3390/ijms21134759. |
| [6] | Cheng QQ, Mao SL, Yang LN, et al. Fuzheng Xiaoai decoction 1 ameliorated cancer cachexia-induced muscle atrophy via Akt-mTOR pathway[J]. J Ethnopharmacol, 2023, 303: 115944. DOI: 10.1016/j.jep.2022.115944. |
| [7] | Gomes JLP, Tobias GC, Fernandes T, et al. Effects of aerobic exercise training on MyomiRs expression in cachectic and non-cachectic cancer mice[J]. Cancers (Basel), 2021, 13(22): 5728. DOI: 10.3390/cancers13225728. |
| [8] | Goldbraikh D, Neufeld D, Eid-Mutlak Y, et al. USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation[J]. EMBO Rep, 2020, 21(4): e48791. DOI: 10.15252/embr.201948791. |
| [9] | Wang R, Kumar B, Doud EH, et al. Skeletal muscle-specific over-expression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations[J]. Mol Ther Nucleic Acids, 2022, 28: 231-248. DOI: 10.1016/j.omtn.2022.03.009. |
| [10] | Chen R, Yuan W, Zheng Y, et al. Delivery of engineered extracellular vesicles with miR-29b editing system for muscle atrophy therapy[J]. J Nanobiotechnology, 2022, 20(1): 304. DOI: 10.1186/s12951-022-01508-4. |
| [11] | Xie K, Xiong H, Xiao W, et al. Downregulation of miR-29c promotes muscle wasting by modulating the activity of leukemia inhibitory factor in lung cancer cachexia[J]. Cancer Cell Int, 2021, 21(1): 627. DOI: 10.1186/s12935-021-02332-w. |
| [12] |
Santos JMO, Peixoto da Silva S, Bastos MMSM, et al. Decoding the role of inflammation-related microRNAs in cancer cachexia: a study using HPV16-transgenic mice and in silico approaches[J]. J Physiol Biochem, 2022, 78(2): 439-455. DOI: 10.1007/s13105-021-00866-1.
pmid: 35298788 |
| [13] | Kuang JX, Shen Q, Zhang RQ, et al. Carnosol attenuated atrophy of C2C12 myotubes induced by tumour-derived exosomal miR-183-5p through inhibiting Smad3 pathway activation and keeping mitochondrial respiration[J]. Basic Clin Pharmacol Toxicol, 2022, 131(6): 500-513. DOI: 10.1111/bcpt.13795. |
| [14] | Miao C, Zhang W, Feng L, et al. Cancer-derived exosome miRNAs induce skeletal muscle wasting by Bcl-2-mediated apoptosis in colon cancer cachexia[J]. Mol Ther Nucleic Acids, 2021, 24: 923-938. DOI: 10.1016/j.omtn.2021.04.015. |
| [15] |
Okugawa Y, Toiyama Y, Hur K, et al. Circulating miR-203 derived from metastatic tissues promotes myopenia in colorectal cancer patients[J]. J Cachexia Sarcopenia Muscle, 2019, 10(3): 536-548. DOI: 10.1002/jcsm.12403.
pmid: 31091026 |
| [16] | Hughes DC, Goodman CA, Baehr LM, et al. A critical discussion on the relationship between E3 ubiquitin ligases, protein degradation, and skeletal muscle wasting: it's not that simple[J]. Am J Physiol Cell Physiol, 2023, 325(6): C1567-C1582. DOI: 10.1152/ajpcell.00457.2023. |
| [17] | Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J]. Cells, 2020, 9(9): 1970. DOI: 10.3390/cells9091970. |
| [18] | Qiu L, Chen W, Wu C, et al. Exosomes of oral squamous cell carcinoma cells containing miR-181a-3p induce muscle cell atrophy and apoptosis by transmissible endoplasmic reticulum stress signaling[J]. Biochem Biophys Res Commun, 2020, 533(4): 831-837. DOI: 10.1016/j.bbrc.2020.09.066. |
| [19] | Hu Y, Hu Y, Zhang S, et al. Tumor-derived miR-203a-3p potentiates muscle wasting by inducing muscle ferroptosis in pancreatic cancer[J]. Cancer Lett, 2025, 614: 217523. DOI: 10.1016/j.canlet.2025.217523. |
| [20] | Gallot YS, Bohnert KR. Confounding roles of ER stress and the unfolded protein response in skeletal muscle atrophy[J]. Int J Mol Sci, 2021, 22(5): 2567. DOI: 10.3390/ijms22052567. |
| [21] |
Bohnert KR, Gallot YS, Sato S, et al. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia[J]. FASEB J, 2016, 30(9): 3053-3068. DOI: 10.1096/fj.201600250RR.
pmid: 27206451 |
| [22] |
He WA, Calore F, Londhe P, et al. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7[J]. Proc Natl Acad Sci USA, 2014, 111(12): 4525-4529. DOI: 10.1073/pnas.1402714111.
pmid: 24616506 |
| [23] | Freire PP, Cury SS, Lopes LO, et al. Decreased miR-497-5p suppresses IL-6 induced atrophy in muscle cells[J]. Cells, 2021, 10(12): 3527. DOI: 10.3390/cells10123527. |
| [1] | Wang Mengju, Wang Xia. Anti-tumor effect and immunomodulatory mechanism of atractylenolide Ⅱ on colon cancer mice [J]. Journal of International Oncology, 2025, 52(9): 545-553. |
| [2] | Li Peng, Zhang Shuang, Liu Huafeng, Ji Na, Hou Xiangkun, Xi Aohang, Zong Jianhai. Research on positioning errors analysis of gamma knife pain-free face mask fractionated treatment for head tumors based on kV orthogonal image guidance [J]. Journal of International Oncology, 2025, 52(9): 554-559. |
| [3] | Chen Qiaoliang, Qin Xinyan, Lai Ruihe, Tan Shuangxiu. Diagnostic value of multimodal Nomogram model combining 18F-FDG PET/CT and ultrasound for triple negative breast cancer [J]. Journal of International Oncology, 2025, 52(9): 560-565. |
| [4] | Wu Songyou, Wang Gang, Wang Wenling, Dong Hongmin, Chen Weiwei, Li Xiaokai, Chen Wanghua, Zuo Kai. Prospective cohort study on the effect of abdominal circumference on the intestinal radiation dose volume and the acute intestinal toxicity in pelvic intensity modulated radiation therapy for rectal cancer patients [J]. Journal of International Oncology, 2025, 52(9): 566-575. |
| [5] | Qiu Kexin, Li Mengzhen, Guo Haoran, Fan Mengsi, Yan Li. Prognostic analysis of different surgical approaches in elderly patients with advanced ovarian cancer [J]. Journal of International Oncology, 2025, 52(9): 576-582. |
| [6] | Liu Mei, Hu Yuchong, Li Fengtong, Chao Lemen, Liu Meng, Kang Linlin. Mechanism of action of SHCBP1 in malignant tumors and progress in clinical research [J]. Journal of International Oncology, 2025, 52(9): 583-586. |
| [7] | Cheng Honglei, Wang Ti, Lan Zhidong, Gong Heyi. Value of clinical indicators in predicting the efficacy of neoadjuvant therapy for esophageal cancer [J]. Journal of International Oncology, 2025, 52(9): 592-597. |
| [8] | Hai Yanan, Bao Wenfang, Shentu Hangxiao, Chen Jingde. Mechanism of immunotherapy resistance and the progress of post-resistance treatment for dMMR/MSI-H metastatic colorectal cancer [J]. Journal of International Oncology, 2025, 52(9): 598-602. |
| [9] | Radiation Oncology Professional Committee of the Chinese Research Hospital Association, Hebei Society of Mathematical and Physical Medicine, Tianjin Precision Medicine Society. Expert consensus on the clinical diagnosis and treatment of post-obstructive pneumonia in newly diagnosed lung cancer patients [J]. Journal of International Oncology, 2025, 52(8): 484-494. |
| [10] | Li Guangxin, Quan Huijuan, Gao Zhijuan, Wang Xiaojun, Li Liang, Dong Qian, Miao Yongtao, Liu Dongsheng. Correlation between serum levels of HAMP, SPP1, RGS2 and clinical pathological characteristics of gastric cancer patients and their predictive value for postoperative recurrence or metastasis [J]. Journal of International Oncology, 2025, 52(8): 502-507. |
| [11] | Chen Jun, Tang Dandan, Zhou Yuxin, Tan Yuting, Li Honglan, Xu Qun, Xiang Yongbing. Time trend analysis of the disease burden of colorectal cancer among young and middle-aged adults in China from 1990 to 2021 [J]. Journal of International Oncology, 2025, 52(8): 508-516. |
| [12] | Huang Jinfa, Zheng Lianqiu, Wu Jinpiao, Liu Deting, Chen Huiling. Prediction model for post-TACE infection risk in elderly patients with liver cancer [J]. Journal of International Oncology, 2025, 52(8): 517-522. |
| [13] | Zhang Baihong, Yue Hongyun. Novel therapeutic strategies: targeting cancer metastasis [J]. Journal of International Oncology, 2025, 52(8): 528-531. |
| [14] | Guo Junlong, Zou Ruiqi, Chen Shaoqiang, Liang Yuxin, Li Jing, Yong Sunan, He Yuting, Xie Xiaobing, Li Ping. Research progress of RNA m6A modification in breast cancer [J]. Journal of International Oncology, 2025, 52(8): 532-537. |
| [15] | Wu Xin, Ren Haipeng. Research progress of KRASG12C inhibitors in the treatment of advanced colorectal cancer [J]. Journal of International Oncology, 2025, 52(8): 538-542. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
