[1] |
郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035.
|
[2] |
Higa T, Nakayama KI. Cell cycle heterogeneity and plasticity of colorectal cancer stem cells[J]. Cancer Sci, 2024, 115(5): 1370-1377. DOI: 10.1111/cas.16117.
|
[3] |
Radu P, Zurzu M, Tigora A, et al. The impact of cancer stem cells in colorectal cancer[J]. Int J Mol Sci, 2024, 25(8): 4140. DOI: 10.3390/ijms25084140.
|
[4] |
Han J, Won M, Kim JH, et al. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective[J]. Chem Soc Rev, 2020, 49(22): 7856-7878. DOI: 10.1039/d0cs00379d.
|
[5] |
Fumagalli A, Oost KC, Kester L, et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer[J]. Cell Stem Cell, 2020, 26(4): 569-578.e7. DOI: 10.1016/j.stem.2020.02.008.
pmid: 32169167
|
[6] |
Moorman A, Benitez EK, Cambulli F, et al. Progressive plasticity during colorectal cancer metastasis[J]. Nature, 2025, 637(8047): 947-954. DOI: 10.1038/s41586-024-08150-0.
|
[7] |
Heinz MC, Peters NA, Oost KC, et al. Liver colonization by colorectal cancer metastases requires YAP-controlled plasticity at the micrometastatic stage[J]. Cancer Res, 2022, 82(10): 1953-1968. DOI: 10. 1158/0008-5472.CAN-21-0933.
pmid: 35570706
|
[8] |
Qin R, Fan X, Huang Y, et al. Role of glucose metabolic reprogramming in colorectal cancer progression and drug resistance[J]. Transl Oncol, 2024, 50: 102156. DOI: 10.1016/j.tranon.2024.102156.
|
[9] |
Kuo CC, Ling HH, Chiang MC, et al. Metastatic colorectal cancer rewrites metabolic program through a Glut3-YAP-dependent signaling circuit[J]. Theranostics, 2019, 9(9): 2526-2540. DOI: 10.7150/thno.32915.
|
[10] |
Kita M, Fujiwara-Tani R, Kishi S, et al. Role of creatine shuttle in colorectal cancer cells[J]. Oncotarget, 2023, 14: 485-501. DOI: 10.18632/oncotarget.28436.
pmid: 37204253
|
[11] |
Huang Y, Wang F, Lin X, et al. Nuclear VCP drives colorectal cancer progression by promoting fatty acid oxidation[J]. Proc Natl Acad Sci U S A, 2023, 120(41): e2221653120. DOI: 10.1073/pnas.2221653120.
|
[12] |
Lu J, Kornmann M, Traub B. Role of epithelial to mesenchymal transition in colorectal cancer[J]. Int J Mol Sci, 2023, 24(19): 14815. DOI: 10.3390/ijms241914815.
|
[13] |
Bustamante A, Baritaki S, Zaravinos A, et al. Relationship of signaling pathways between RKIP expression and the inhibition of EMT-inducing transcription factors SNAIL1/2, TWIST1/2 and ZEB1/2[J]. Cancers (Basel), 2024, 16(18): 3180. DOI: 10.3390/cancers16183180.
|
[14] |
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis[J]. J Hematol Oncol, 2022, 15(1): 129. DOI: 10.1186/s13045-022-01347-8.
|
[15] |
Tolue Ghasaban F, Moghbeli M. Long non-coding RNAs as the pivotal regulators of epithelial mesenchymal transition through Wnt/β-catenin signaling pathway in tumor cells[J]. Pathol Res Pract, 2024, 263: 155683. DOI: 10.1016/j.prp.2024.155683.
|
[16] |
Liu H, Li D, Sun L, et al. Interaction of lncRNA miR100HG with hnRNPA2B1 facilitates m6A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression[J]. Mol Cancer, 2022, 21(1): 74. DOI: 10.1186/s12943-022-01555-3.
|
[17] |
Lei ZN, Teng QX, Koya J, et al. The correlation between cancer stem cells and epithelial-mesenchymal transition: molecular mechanisms and significance in cancer theragnosis[J]. Front Immunol, 2024, 15: 1417201. DOI: 10.3389/fimmu.2024.1417201.
|
[18] |
Radhakrishnan V, Kaifi JT, Suvilesh KN. Circulating tumor cells: how far have we come with mining these seeds of metastasis?[J]. Cancers (Basel), 2024, 16(4): 816. DOI: 10.3390/cancers16040816.
|
[19] |
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice[J]. Signal Transduct Target Ther, 2024, 9(1): 226. DOI: 10.1038/s41392-024-01938-6.
|
[20] |
Gkountela S, Castro-Giner F, Szczerba BM, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding[J]. Cell, 2019, 176(1/2): 98-112.e14. DOI: 10.1016/j.cell.2018.11.046.
|
[21] |
Wei C, Yang C, Wang S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circula-ting tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64. DOI: 10.1186/s12943-019-0976-4.
|
[22] |
Andryszkiewicz W, Misiąg P, Karwowska A, et al. Cancer metastases to the liver: mechanisms of tumor cell colonization[J]. Pharmaceuticals (Basel), 2024, 17(9): 1251. DOI: 10.3390/ph17091251.
|
[23] |
Li J, Liu XG, Ge RL, et al. The ligation between ERMAP, galectin-9 and dectin-2 promotes kupffer cell phagocytosis and antitumor immunity[J]. Nat Immunol, 2023, 24(11): 1813-1824. DOI: 10.1038/s41590-023-01634-7.
pmid: 37813965
|
[24] |
Gracia-Sancho J, Caparrós E, Fernández-Iglesias A, et al. Role of liver sinusoidal endothelial cells in liver diseases[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(6): 411-431. DOI: 10.1038/s41575-020-00411-3.
pmid: 33589830
|
[25] |
Fan X, Meng M, Li B, et al. Brevilin A is a potent anti-metastatic CRC agent that targets the VEGF-IL6-STAT3 axis in the HSCs-CRC interplay[J]. J Transl Med, 2023, 21(1): 260. DOI: 10.1186/s12967-023-04087-6.
|
[26] |
Zhao S, Mi Y, Guan B, et al. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer[J]. J Hematol Oncol, 2020, 13(1): 156. DOI: 10.1186/s13045-020-00991-2.
|
[27] |
Chen Z, Zhang G, Ren X, et al. Cross-talk between myeloid and B cells shapes the distinct microenvironments of primary and secondary liver cancer[J]. Cancer Res, 2023, 83(21): 3544-3561. DOI: 10.1158/0008-5472.CAN-23-0193.
|
[28] |
Bertocchi A, Carloni S, Ravenda PS, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver[J]. Cancer Cell, 2021, 39(5): 708-724.e11. DOI: 10.1016/j.ccell.2021.03.004.
pmid: 33798472
|
[29] |
高凡, 王萍, 杜超, 等. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. DOI: 10. 3760/cma.j.cn371439-20240429-00065.
|