国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (2): 107-112.doi: 10.3760/cma.j.cn371439-20240522-00016
收稿日期:
2024-05-22
修回日期:
2024-06-04
出版日期:
2025-02-08
发布日期:
2025-03-17
通讯作者:
田宝文,Email: 基金资助:
Wang Xibo1,2, Tian Baowen3(), Chen Shiqiao4(
)
Received:
2024-05-22
Revised:
2024-06-04
Online:
2025-02-08
Published:
2025-03-17
Contact:
Tian Baowen, Email: Supported by:
摘要:
肿瘤细胞能够逃避免疫系统的监视和攻击,即产生免疫逃逸;近年来调节性B(Breg)细胞在肿瘤免疫研究中备受瞩目。Breg细胞通过分泌多种细胞因子,在肿瘤免疫逃逸中发挥作用,该领域的机制研究已取得一定成果,对于肿瘤的临床治疗提供了更多靶点和思路,但Breg细胞的表型分类及其在肿瘤免疫中的复杂机制仍有待于系统解析。
王熙博, 田宝文, 陈士巧. Breg细胞在肿瘤免疫逃逸中的机制及相关治疗靶点[J]. 国际肿瘤学杂志, 2025, 52(2): 107-112.
Wang Xibo, Tian Baowen, Chen Shiqiao. Mechanism of Breg cell in tumor immune escape and related therapeutic targets[J]. Journal of International Oncology, 2025, 52(2): 107-112.
[1] |
Michaud D, Steward CR, Mirlekar B, et al. Regulatory B cells in cancer[J]. Immunol Rev, 2021, 299(1): 74-92. DOI: 10.1111/imr.12939.
pmid: 33368346 |
[2] |
Hong M, Liao Y, Liang J, et al. Immunomodulation of human CD19+CD25high regulatory B cells via Th17/Foxp3 regulatory T cells and Th1/Th2 cytokines[J]. Hum Immunol, 2019, 80(10): 863-870. DOI: 10.1016/j.humimm.2019.05.011.
pmid: 31262519 |
[3] | Feng H, Zhao Z, Zhao X, et al. A novel memory-like Tfh cell subset is precursor to effector Tfh cells in recall immune responses[J]. J Exp Med, 2024, 221(1): e20221927. DOI: 10.1084/jem.20221927. |
[4] | Xue J, Xu L, Zhong H, et al. Impaired regulatory function of granzyme B-producing B cells against T cell inflammatory responses in lupus mice[J]. Lupus Sci Med, 2023, 10(2): e000974. DOI: 10.1136/lupus-2023-000974. |
[5] | Pati S, Mukherjee S, Dutta S, et al. Tumor-associated CD19+CD39- B regulatory cells deregulate! recombination to suppress antibody responses[J]. Cancer Immunol Res, 2023, 11(3): 364-380. DOI: 10.1158/2326-6066.Cir-21-1073. |
[6] | Han D, Lee AY, Kim T, et al. Microenvironmental network of clonal CXCL13+CD4+ T cells and Tregs in pemphigus chronic blisters[J]. J Clin Invest, 2023, 133(23): e166357. DOI: 10.1172/jci166357. |
[7] | O'connor RA, Martinez BR, Koppensteiner L, et al. Cancer-associated fibroblasts drive CXCL13 production in activated T cells via TGF-beta[J]. Front Immunol, 2023, 14: 1221532. DOI: 10.3389/fimmu.2023.1221532. |
[8] | Dou Y, Ma C, Wang K, et al. Dysbiotic tumor microbiota associates with head and neck squamous cell carcinoma outcomes[J]. Oral Oncol, 2022: 124105657. DOI: 10.1016/j.oraloncology.2021.105657. |
[9] | Anisiewicz A, Pawlik A, Filip-Psurska B, et al. Differential impact of calcitriol and its analogs on tumor stroma in young and aged ovariectomized mice bearing 4T1 mammary gland cancer[J]. Int J Mol Sci, 2020, 21(17): 6359. DOI: 10.3390/ijms21176359. |
[10] | Wang C, Yu G, Xu Y, et al. Knockdown of long non-coding RNA HCP5 increases radiosensitivity through cellular senescence by regulating microRNA-128 in gliomas[J]. Cancer Manag Res, 2021, 13: 133723-133737. DOI: 10.2147/cmar.S301333. |
[11] | Fan Z, Zhou J, Shu Q, et al. Aptamer-bivalent-cholesterol-mediated proximity entropy-driven exosomal protein reporter for tumor diagnosis[J]. Biosens Bioelectron, 2024, 251: 116104. DOI: 10.1016/j.bios.2024.116104. |
[12] | Wu Y, Han W, Dong H, et al. The rising roles of exosomes in the tumor microenvironment reprogramming and cancer immunotherapy[J]. MedComm(2020), 2024, 5(4): e541. DOI: 10.1002/mco2.541. |
[13] |
López L, Morosi LG, La Terza F, et al. Dendritic cell-targeted therapy expands CD8 T cell responses to bona-fide neoantigens in lung tumors[J]. Nat Commun, 2024, 15(1): 2280. DOI: 10.1038/s41467-024-46685-y.
pmid: 38480738 |
[14] |
Boldison J, Da Rosa LC, Davies J, et al. Dendritic cells license regulatory B cells to produce IL-10 and mediate suppression of antigen-specific CD8 T cells[J]. Cell Mol Immunol, 2020, 17(8): 843-855. DOI: 10.1038/s41423-019-0324-z.
pmid: 31728048 |
[15] |
Mattei F, Andreone S, Marone G, et al. Eosinophils in the tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1273: 1-28. DOI: 10.1007/978-3-030-49270-0_1.
pmid: 33119873 |
[16] | Song H, Liu A, Liu G, et al. T follicular regulatory cells suppress Tfh-mediated B cell help and synergistically increase IL-10-producing B cells in breast carcinoma[J]. Immunol Res, 2019, 67(4/5): 416-423. DOI: 10.1007/s12026-019-09090-y. |
[17] | Della Bella C, Soluri MF, Puccio S, et al. The helicobacter pylori CagY protein drives gastric Th1 and Th17 inflammation and B cell proliferation in gastric MALT lymphoma[J]. Int J Mol Sci, 2021, 22(17): 9459. DOI: 10.3390/ijms22179459. |
[18] |
Ishigami E, Sakakibara M, Sakakibara J, et al. Coexistence of regulatory B cells and regulatory T cells in tumor-infiltrating lymphocyte aggregates is a prognostic factor in patients with breast cancer[J]. Breast Cancer, 2019, 26(2): 180-189. DOI: 10.1007/s12282-018-0910-4.
pmid: 30244409 |
[19] |
Liu Q, Yang C, Wang S, et al. Wnt5a-induced M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression[J]. Cell Commun Signal, 2020, 18(1): 51. DOI: 10.1186/s12964-020-00557-2.
pmid: 32228612 |
[20] |
Kobayashi T, Oishi K, Okamura A, et al. Regulatory B1a cells suppress melanoma tumor immunity via IL-10 production and inhibiting T helper type 1 cytokine production in tumor-infiltrating CD8+ T cells[J]. J Invest Dermatol, 2019, 139(7): 1535-1544.e1. DOI: 10.1016/j.jid.2019.02.016.
pmid: 30836062 |
[21] | Qiao J, Liu Z, Dong C, et al. Targeting tumors with IL-10 prevents dendritic cell-mediated CD8+ T cell apoptosis[J]. Cancer Cell, 2019, 35(6): 901-915.e4. DOI: 10.1016/j.ccell.2019.05.005. |
[22] | Tian F, Xian K, Yang B, et al. Deficiency in TLR4 impairs regulatory B cells production induced by schistosome soluble egg antigen[J]. Mol Biochem Parasitol, 2023, 253: 111532. DOI: 10.1016/j.molbiopara.2022.111532. |
[23] | Youssef AMM, Abu-Ghazaleh HHN, Al-Suhaimat R, et al. The antioxidant and anti-inflammatory activity of selenium and lecithin combination against ethanol-induced gastric ulcer in mice via modulating IGF-1/PTEN/Akt/FoxO3a signaling[J]. Biol Trace Elem Res, 2024, 202(5): 2158-2169. DOI: 10.1007/s12011-023-03831-9. |
[24] |
Thomsen EA, Rovsing AB, Anderson MV, et al. Identification of BLNK and BTK as mediators of rituximab-induced programmed cell death by CRISPR screens in GCB-subtype diffuse large B-cell lymphoma[J]. Mol Oncol, 2020, 14(9): 1978-1997. DOI: 10.1002/1878-0261.12753.
pmid: 32585766 |
[25] | Mirlekar B, Michaud D, Lee SJ, et al. B cell-derived IL35 drives STAT3-dependent CD8+ T-cell exclusion in pancreatic cancer[J]. Cancer Immunol Res, 2020, 8(3): 292-308. DOI: 10.1158/2326-6066.Cir-19-0349. |
[26] | Ren H, Liu X, Xu Q, et al. Interleukin-35 expression promotes hepatocellular carcinogenesis by inducing γδ T-cell exhaustion[J]. Genomics, 2023, 115(3): 110639. DOI: 10.1016/j.ygeno.2023.110639. |
[27] | Sun H. Ge Y, Liu J, et al. Tumor-derived interleukin 35 mediates the dissemination of gemcitabine resistance in pancreatic adenocarcinoma[J]. Oncogene, 2024, 43(11): 776-788. DOI: 10.1038/s41388-024-02938-0. |
[28] | Harris RJ, Willsmore Z, Laddach R, et al. Enriched circulating and tumor-resident TGF-β+ egulatory B cells in patients with melanoma promote FOXP3+ regs[J]. Oncoimmunology, 2022, 11(1): 2104426. DOI: 10.1080/2162402x.2022.2104426. |
[29] | Choi SH, Cho HB, Choi JH, et al. Nano-chemical priming strategy to enhance TGF-β resistance and anti-tumor activity of natural killer cells[J]. J Control Release, 2024, 367: 768-778. DOI: 10.1016/j.jconrel.2024.02.008. |
[30] | Zhang Q, Zhang P, Zhao Z, et al. Exploring the role of differentially expressed metabolic genes and their mechanisms in bone metastatic prostate cancer[J]. PeerJ, 2023, 11: e15013. DOI: 10.7717/peerj.15013. |
[31] |
Pereira BI, Devine OP, Vukmanovic-Stejic M, et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition[J]. Nat Commun, 2019, 10(1): 2387. DOI: 10.1038/s41467-019-10335-5.
pmid: 31160572 |
[32] | Premkumar K, Shankar BS. TGF-βR inhibitor SB431542 restores immune suppression induced by regulatory B-T cell axis and decreases tumour burden in murine fibrosarcoma[J]. Cancer Immunol Immunother, 2021, 70(1): 153-168. DOI: 10.1007/s00262-020-02666-w. |
[33] | Malaguarnera L. Influence of resveratrol on the immune response[J]. Nutrients, 2019, 11(5): 946. DOI: 10.3390/nu11050946. |
[34] |
Jiang L, Wang Y, Zhao J, et al. Direct tumor killing and immunotherapy through anti-serpinB9 therapy[J]. Cell, 2020, 183(5): 1219-1233.e18. DOI: 10.1016/j.cell.2020.10.045.
pmid: 33242418 |
[35] | Wang W, Zou R, Qiu Y, et al. Interaction networks converging on immunosuppressive roles of granzyme B: special niches within the tumor microenvironment[J]. Front Immunol, 2021, 12: 670324. DOI: 10.3389/fimmu.2021.670324. |
[36] | Lim JS, Kim CR, Shin KS, et al. Red ginseng extract and γ- aminobutyric acid synergistically enhance immunity against cancer cells and antitumor metastasis activity in mice[J]. J Med Food, 2023, 26(1): 27-35. DOI: 10.1089/jmf.2022.K.0079. |
[37] |
Hadi M, Akbari A, Dehbidi GR, et al. Expression and purification of human granzyme B fusion protein to induce targeted apoptosis in PSMA positive prostate cancer cells[J]. Protein Pept Lett, 2022, 29(7): 631-640. DOI: 10.2174/0929866529666220802164338.
pmid: 36165538 |
[38] | Salmi S, Hälinen K, Lin A, et al. The association of CD8+ cytotoxic T cells and granzyme B+ lymphocytes with immunosuppressive factors, tumor stage and prognosis in cutaneous melanoma[J]. Biomedicines, 2022, 10(12): 3209. DOI: 10.3390/biomedicines10123209. |
[39] | Wu H, Xia L, Jia D, et al. PD-L1+ regulatory B cells act as a T cell suppressor in a PD-L1-dependent manner in melanoma patients with bone metastasis[J]. Mol Immunol, 2020, 119: 83-91. DOI: 10.1016/j.molimm.2020.01.008. |
[40] |
Landuyt AE, Klocke BJ, Colvin TB, et al. Cutting edge: ICOS-deficient regulatory T cells display normal induction of Il10 but readily downregulate expression of Foxp3[J]. J Immunol, 2019, 202(4): 1039-1044. DOI: 10.4049/jimmunol.1801266.
pmid: 30642977 |
[41] | Kepp O, Bezu L, Yamazaki T, et al. ATP and cancer immunosurveillance[J]. EMBO J, 2021, 40(13): e108130. DOI: 10.15252/embj.2021108130. |
[42] |
Jeske SS, Brand M, Ziebart A, et al. Adenosine-producing regulatory B cells in head and neck cancer[J]. Cancer Immunol Immunother, 2020, 69(7): 1205-1216. DOI: 10.1007/s00262-020-02535-6.
pmid: 32146518 |
[43] |
Kim HJ, Ji YR, Lee YM. Crosstalk between angiogenesis and immune regulation in the tumor microenvironment[J]. Arch Pharm Res, 2022, 45(6): 401-416. DOI: 10.1007/s12272-022-01389-z.
pmid: 35759090 |
[44] |
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery[J]. J Exp Clin Cancer Res, 2024, 43(1): 23. DOI: 10.1186/s13046-024-02949-5.
pmid: 38245798 |
[45] |
Cavallazzi Sebold B, Ni G, Li J, et al. PEGylated IL-10: clinical development in cancer immunotherapy, where to go?[J]. Curr Oncol Rep, 2023, 25(2): 115-122. DOI: 10.1007/s11912-022-01355-4.
pmid: 36585961 |
[46] |
de Streel G, Bertrand C, Chalon N, et al. Selective inhibition of TGF-β1 produced by GARP-expressing tregs overcomes resistance to PD-1/PD-L1 blockade in cancer[J]. Nat Commun, 2020, 11(1): 4545. DOI: 10.1038/s41467-020-17811-3.
pmid: 32917858 |
[47] |
Liu QF, Wu HW, Li Y, et al. Combined blockade of TGf-β1 and GM-CSF improves chemotherapeutic effects for pancreatic cancer by modulating tumor microenvironment[J]. Cancer Immunol Immunother, 2020, 69(8): 1477-1492. DOI: 10.1007/s00262-020-02542-7.
pmid: 32285172 |
[48] | Beider K, Voevoda-Dimenshtein V, Zoabi A, et al. CXCL13 chemokine is a novel player in multiple myeloma osteolytic microenvironment, M2 macrophage polarization, and tumor progression[J]. J Hematol Oncol, 2022, 15(1): 144. DOI: 10.1186/s13045-022-01366-5. |
[49] | Shen L, Li J, Liu Q, et al. Nano-trapping CXCL13 reduces regulatory B cells in tumor microenvironment and inhibits tumor growth[J]. J Control Release, 2022, 343: 303-313. DOI: 10.1016/j.jconrel.2022.01.039. |
[50] | Yan A, Wang C, Liu C, et al. Clinical efficacy and safety of camrelizumab and sintilimab in the treatment of advanced non-small cell lung cancer[J]. J Int Oncol, 2024, 51(3): 137-142. DOI: 10.3760/cma.j.cn371439-20231109-00022. |
[51] | Li Y, Zheng Y, Xu S, et al. The nanobody targeting PD-L1 and CXCR4 counteracts pancreatic stellate cell-mediated tumour progression by disrupting tumour microenvironment[J]. Int Immunopharmacol, 2024, 132: 111944. DOI: 10.1016/j.intimp.2024.111944. |
[52] |
Pavlasova G, Mraz M. The regulation and function of CD20: an "enigma" of B-cell biology and targeted therapy[J]. Haematologica, 2020, 105(6): 1494-1506. DOI: 10.3324/haematol.2019.243543.
pmid: 32482755 |
[53] | Bao J, Betzler AC, Hess J, et al. Exploring the dual role of B cells in solid tumors: implications for head and neck squamous cell carcinoma[J]. Front Immunol, 2023, 14: 1233085. DOI: 10.3389/fimmu.2023.1233085. |
[54] |
Flores-Borja F, Blair P. Mechanisms of induction of regulatory B cells in the tumour microenvironment and their contribution to immunosuppression and pro-tumour responses[J]. Clin Exp Immunol, 2022, 209(1): 33-45. DOI: 10.1093/cei/uxac029. The presence of tumour-infiltrating immune cells was originally associated with the induction of anti-tumour responses and good a prognosis. A more refined characterization of the tumour microenvironment has challenged this original idea and evidence now exists pointing to a critical role for immune cells in the modulation of anti-tumour responses and the induction of a tolerant pro-tumour environment. The coordinated action of diverse immunosuppressive populations, both innate and adaptive, shapes a variety of pro-tumour responses leading to tumour progression and metastasis. Regulatory B cells have emerged as critical modulators and suppressors of anti-tumour responses. As reported in autoimmunity and infection studies, Bregs are a heterogeneous population with diverse phenotypes and different mechanisms of action. Here we review recent studies on Bregs from animal models and patients, covering a variety of types of cancer. We describe the heterogeneity of Bregs, the cellular interactions they make with other immune cells and the tumour itself, and their mechanism of suppression that enables tumour escape. We also discuss the potential therapeutic tools that may inhibit Bregs function and promote anti-tumour responses.© The Author(s) 2022. Published by Oxford University Press on behalf of the British Society for Immunology. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com.
pmid: 35350071 |
[55] | 陆佳玲, 黄慧娟, 刘丹, 等. 博纳吐单抗治疗急性B淋巴细胞白血病的疗效和安全性[J]. 国际肿瘤学杂志, 2022, 49(8): 494-498. DOI: 10.3760/cma.j.cn371439-20220330-00095. |
[1] | 王智颖, 盛立军. 外周血标志物在非小细胞肺癌免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 180-185. |
[2] | 叶永英, 邹艳, 陈天明, 吴伟莉. 时钟基因Period家族在头颈鳞状细胞癌中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(2): 113-118. |
[3] | 陈茹雁, 付振明. 晚期肾细胞癌的免疫治疗现状与进展[J]. 国际肿瘤学杂志, 2025, 52(2): 124-128. |
[4] | 黄镇, 晏菲, 马燕凌, 孙建海. 食管癌靶向及免疫治疗研究进展[J]. 国际肿瘤学杂志, 2025, 52(1): 53-59. |
[5] | 伍杨, 李甜, 张润兵, 史婷婷, 高春, 郑晓凤, 张久聪. 胃癌及食管胃结合部癌免疫及靶向治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 595-600. |
[6] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[7] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[8] | 傅旖, 马辰莺, 张露, 周菊英. 生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[9] | 张文馨, 夏泠, 彭晋, 周福祥. 甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[10] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇. 信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[11] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[12] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[13] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[14] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[15] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||