
国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (4): 247-251.doi: 10.3760/cma.j.cn371439-20220208-00045
        
               		高敏, 冯静, 王丽, 钟海, 文昱婷, 万兵, 张秀伟(
)
                  
        
        
        
        
    
收稿日期:2022-02-08
									
				
											修回日期:2022-03-21
									
				
									
				
											出版日期:2022-04-08
									
				
											发布日期:2022-05-11
									
			通讯作者:
					张秀伟
											E-mail:zhangxiuweiywy@126.com
												基金资助:
        
               		Gao Min, Feng Jing, Wang Li, Zhong Hai, Wen Yuting, Wan Bing, Zhang Xiuwei(
)
			  
			
			
			
                
        
    
Received:2022-02-08
									
				
											Revised:2022-03-21
									
				
									
				
											Online:2022-04-08
									
				
											Published:2022-05-11
									
			Contact:
					Zhang Xiuwei   
											E-mail:zhangxiuweiywy@126.com
												Supported by:摘要:
肺癌患者在治疗过程中出现的耐药和不良反应依然是现代医学难题。研究表明肠道和肺部微生物群的丰度、多样性和代谢产物等可用于辅助肺癌的早期诊断和预后监测。同时,肠道微生物群还可以联合化疗、免疫治疗及靶向治疗等作为综合治疗的手段,增强疗效并减轻其不良反应。微生物群已在肺癌的诊疗中呈现出广阔的应用前景。
高敏, 冯静, 王丽, 钟海, 文昱婷, 万兵, 张秀伟. 微生物群与肺癌的早期诊断及辅助治疗[J]. 国际肿瘤学杂志, 2022, 49(4): 247-251.
Gao Min, Feng Jing, Wang Li, Zhong Hai, Wen Yuting, Wan Bing, Zhang Xiuwei. Application of microbiota in the early diagnosis and adjunctive treatment of lung cancer[J]. Journal of International Oncology, 2022, 49(4): 247-251.
| [1] |  
											  Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. 
											 												 doi: 10.3322/caac.21660  | 
										
| [2] |  
											  Tsay JJ, Wu BG, Sulaiman I, et al. Lower airway dysbiosis affects lung cancer progression[J]. Cancer Discov, 2021, 11(2): 293-307. DOI: 10.1158/2159-8290.CD-20-0263. 
											 												 doi: 10.1158/2159-8290.CD-20-0263  | 
										
| [3] |  
											  Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis[J]. Nat Rev Microbiol, 2017, 15(1): 55-63. DOI: 10.1038/nrmicro.2016.142. 
											 												 doi: 10.1038/nrmicro.2016.142  | 
										
| [4] |  
											  Liu X, Cheng Y, Zang D, et al. The role of gut microbiota in lung cancer: from carcinogenesis to immunotherapy[J]. Front Oncol, 2021, 11: 720842. DOI: 10.3389/fonc.2021.720842. 
											 												 doi: 10.3389/fonc.2021.720842  | 
										
| [5] |  
											  Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer[J]. Gut Microbes, 2020, 11(4): 1030-1042. DOI: 10.1080/19490976.2020.1737487. 
											 												 doi: 10.1080/19490976.2020.1737487  | 
										
| [6] |  
											  Jungnickel C, Schmidt LH, Bittigkoffer L, et al. IL-17C mediates the recruitment of tumor-associated neutrophils and lung tumor growth[J]. Oncogene, 2017, 36(29): 4182-4190. DOI: 10.1038/onc.2017.28. 
											 												 doi: 10.1038/onc.2017.28 pmid: 28346430  | 
										
| [7] |  
											  Brevi A, Cogrossi LL, Grazia G, et al. Much more than IL-17A: cytokines of the IL-17 family between microbiota and cancer[J]. Front Immunol, 2020, 11: 565470. DOI: 10.3389/fimmu.2020.565470. 
											 												 doi: 10.3389/fimmu.2020.565470  | 
										
| [8] |  
											  Jin C, Lagoudas GK, Zhao C, et al. Commensal microbiota promote lung cancer development via γδT Cells[J]. Cell, 2019, 176(5): 998-1013. e16. DOI: 10.1016/j.cell.2018.12.040. 
											 												 doi: 10.1016/j.cell.2018.12.040  | 
										
| [9] |  
											  Salazar Y, Zheng X, Brunn D, et al. Microenvironmental Th9 and Th17 lymphocytes induce metastatic spreading in lung cancer[J]. J Clin Invest, 2020, 130(7): 3560-3575. DOI: 10.1172/JCI124037. 
											 												 doi: 10.1172/JCI124037 pmid: 32229721  | 
										
| [10] |  
											  Lee SC, Dacheux MA, Norman DD, et al. Regulation of tumor immunity by lysophosphatidic acid[J]. Cancers (Basel), 2020, 12(5): 1202. DOI: 10.3390/cancers12051202. 
											 												 doi: 10.3390/cancers12051202  | 
										
| [11] |  
											  Zhao F, An R, Wang L, et al. Specific gut microbiome and serum metabolome changes in lung cancer patients[J]. Front Cell Infect Microbiol, 2021, 11: 725284. DOI: 10.3389/fcimb.2021.725284. 
											 												 doi: 10.3389/fcimb.2021.725284  | 
										
| [12] |  
											  Chen H, Ma Y, Liu Z, et al. Circulating microbiome DNA: an emerging paradigm for cancer liquid biopsy[J]. Cancer Lett, 2021, 521: 82-87. DOI: 10.1016/j.canlet.2021.08.036. 
											 												 doi: 10.1016/j.canlet.2021.08.036  | 
										
| [13] |  
											  Liu F, Li J, Guan Y, et al. Dysbiosis of the gut microbiome is associated with tumor biomarkers in lung cancer[J]. Int J Biol Sci, 2019, 15(11): 2381-2392. DOI: 10.7150/ijbs.35980. 
											 												 doi: 10.7150/ijbs.35980  | 
										
| [14] |  
											  安江宏, 钱莘, 骆璞, 等. 肠道微生态与肿瘤的诊断和治疗[J]. 国际肿瘤学杂志, 2021, 48(7): 436-440. DOI: 10.3760/cma.j.cn371439-20201019-00084. 
											 												 doi: 10.3760/cma.j.cn371439-20201019-00084  | 
										
| [15] |  
											  Feng Q, Chen WD, Wang YD. Gut microbiota: an integral moderator in health and disease[J]. Front Microbiol, 2018, 9: 151. DOI: 10.3389/fmicb.2018.00151. 
											 												 doi: 10.3389/fmicb.2018.00151  | 
										
| [16] |  
											  Shen W, Tang D, Deng Y, et al. Association of gut microbiomes with lung and esophageal cancer: a pilot study[J]. World J Microbiol Biotechnol, 2021, 37(8): 128. DOI: 10.1007/s11274-021-03086-3. 
											 												 doi: 10.1007/s11274-021-03086-3  | 
										
| [17] |  
											  Hu L, Liu Y, Kong X, et al. Fusobacterium nucleatum facilitates M2 macrophage polarization and colorectal carcinoma progression by activating TLR4/NF-kB/S100A9 cascade[J]. Front Immunol, 2021, 12: 658681. DOI: 10.3389/fimmu.2021.658681. 
											 												 doi: 10.3389/fimmu.2021.658681  | 
										
| [18] |  
											  Greathouse KL, White JR, Vargas AJ, et al. Interaction between the microbiome and TP53 in human lung cancer[J]. Genome Biol, 2018, 19(1): 123. DOI: 10.1186/s13059-018-1501-6. 
											 												 doi: 10.1186/s13059-018-1501-6  | 
										
| [19] |  
											  Leng Q, Holden VK, Deepak J, et al. Microbiota biomarkers for lung cancer[J]. Diagnostics (Basel), 2021, 11(3): 407. DOI: 10.3390/diagnostics11030407. 
											 												 doi: 10.3390/diagnostics11030407  | 
										
| [20] |  
											  Tsay JJ, Wu BG, Badri MH, et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer[J]. Am J Respir Crit Care Med, 2018, 198(9): 1188-1198. DOI: 10.1164/rccm.201710-2118OC. 
											 												 doi: 10.1164/rccm.201710-2118OC  | 
										
| [21] |  
											  Karki R, Man SM, Kanneganti TD. Inflammasomes and cancer[J]. Cancer Immunol Res, 2017, 5(2): 94-99. DOI: 10.1158/2326-6066.CIR-16-0269. 
											 												 doi: 10.1158/2326-6066.CIR-16-0269  | 
										
| [22] |  
											  Peters BA, Hayes RB, Goparaju C, et al. The microbiome in lung cancer tissue and recurrence-free survival[J]. Cancer Epidemiol Biomarkers Prev, 2019, 28(4): 731-740. DOI: 10.1158/1055-9965.EPI-18-0966. 
											 												 doi: 10.1158/1055-9965.EPI-18-0966  | 
										
| [23] |  
											  Yagi K, Huffnagle GB, Lukacs NW, et al. The lung microbiome during health and disease[J]. Int J Mol Sci, 2021, 22(19): 10872. DOI: 10.3390/ijms221910872. 
											 												 doi: 10.3390/ijms221910872  | 
										
| [24] |  
											  Poore GD, Kopylova E, Zhu Q, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach[J]. Nature, 2020, 579(7800): 567-574. DOI: 10.1038/s41586-020-2095-1. 
											 												 doi: 10.1038/s41586-020-2095-1  | 
										
| [25] |  
											  Ran Z, Liu J, Wang F, et al. Pulmonary micro-ecological changes and potential microbial markers in lung cancer patients[J]. Front Oncol, 2021, 10: 576855. DOI: 10.3389/fonc.2020.576855. 
											 												 doi: 10.3389/fonc.2020.576855  | 
										
| [26] | Liu Y, O’Brien JL, Ajami NJ, et al. Lung tissue microbial profile in lung cancer is distinct from emphysema[J]. Am J Cancer Res, 2018, 8(9): 1775-1787. | 
| [27] |  
											  Lee SH, Sung JY, Yong D, et al. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer compa-ring with benign mass like lesions[J]. Lung Cancer, 2016, 102: 89-95. DOI: 10.1016/j.lungcan.2016.10.016. 
											 												 doi: 10.1016/j.lungcan.2016.10.016  | 
										
| [28] |  
											  Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy[J]. Nat Rev Cancer, 2017, 17(5): 271-285. DOI: 10.1038/nrc.2017.13. 
											 												 doi: 10.1038/nrc.2017.13  | 
										
| [29] |  
											  Yu C, Zhou B, Xia X, et al. Prevotella copri is associated with carboplatin-induced gut toxicity[J]. Cell Death Dis, 2019, 10(10): 714. DOI: 10.1038/s41419-019-1963-9. 
											 												 doi: 10.1038/s41419-019-1963-9  | 
										
| [30] |  
											  Gui QF, Lu HF, Zhang CX, et al. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model[J]. Genet Mol Res, 2015, 14(2): 5642-5651. DOI: 10.4238/2015.May.25.16. 
											 												 doi: 10.4238/2015.May.25.16 pmid: 26125762  | 
										
| [31] |  
											  Ramakrishna C, Corleto J, Ruegger PM, et al. Dominant role of the gut microbiota in chemotherapy induced neuropathic pain[J]. Sci Rep, 2019, 9(1): 20324. DOI: 10.1038/s41598-019-56832-x. 
											 												 doi: 10.1038/s41598-019-56832-x pmid: 31889131  | 
										
| [32] |  
											  Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371): 97-103. DOI: 10.1126/science.aan4236. 
											 												 doi: 10.1126/science.aan4236 pmid: 29097493  | 
										
| [33] |  
											  Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97. DOI: 10.1126/science.aan3706. 
											 												 doi: 10.1126/science.aan3706  | 
										
| [34] |  
											  Zhang C, Wang J, Sun Z, et al. Commensal microbiota contributes to predicting the response to immune checkpoint inhibitors in non-small-cell lung cancer patients[J]. Cancer Sci, 2021, 112(8): 3005-3017. DOI: 10.1111/cas.14979. 
											 												 doi: 10.1111/cas.14979  | 
										
| [35] |  
											  Pinato DJ, Howlett S, Ottaviani D, et al. Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer[J]. JAMA Oncol, 2019, 5(12): 1774-1778. DOI: 10.1001/jamaoncol.2019.2785. 
											 												 doi: 10.1001/jamaoncol.2019.2785 pmid: 31513236  | 
										
| [36] |  
											  Lurienne L, Cervesi J, Duhalde L, et al. NSCLC immunotherapy efficacy and antibiotic use: a systematic review and meta-analysis[J]. J Thorac Oncol, 2020, 15(7): 1147-1159. DOI: 10.1016/j.jtho.2020.03.002. 
											 												 doi: S1556-0864(20)30194-5 pmid: 32173463  | 
										
| [37] |  
											  Wojas-Krawczyk K, Kalinka E, Grenda A, et al. Beyond PD-L1 markers for lung cancer immunotherapy[J]. Int J Mol Sci, 2019, 20(8): 1915. DOI: 10.3390/ijms20081915. 
											 												 doi: 10.3390/ijms20081915  | 
										
| [38] |  
											  Derosa L, Hellmann MD, Spaziano M, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer[J]. Ann Oncol, 2018, 29(6): 1437-1444. DOI: 10.1093/annonc/mdy103. 
											 												 doi: S0923-7534(19)34893-8 pmid: 29617710  | 
										
| [39] |  
											  Vernocchi P, Gili T, Conte F, et al. Network analysis of gut microbiome and metabolome to discover microbiota-linked biomarkers in patients affected by non-small cell lung cancer[J]. Int J Mol Sci, 2020, 21(22): 8730. DOI: 10.3390/ijms21228730. 
											 												 doi: 10.3390/ijms21228730  | 
										
| [40] |  
											  Heshiki Y, Vazquez-Uribe R, Li J, et al. Predictable modulation of cancer treatment outcomes by the gut microbiota[J]. Microbiome, 2020, 8(1): 28. DOI: 10.1186/s40168-020-00811-2. 
											 												 doi: 10.1186/s40168-020-00811-2  | 
										
| [1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. | 
| [2] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. | 
| [3] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. | 
| [4] | 彭琴, 蔡玉婷, 王伟. KPNA2在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 181-185. | 
| [5] | 贺嘉慧, 胡钦勇. 基于GBD数据的中国和美国肺癌发病和死亡趋势及危险因素对比分析[J]. 国际肿瘤学杂志, 2024, 51(1): 29-36. | 
| [6] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. | 
| [7] | 黄镇, 陈永顺. 循环肿瘤DNA在肝细胞癌诊疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 59-64. | 
| [8] | 李雄安, 颜艳艳. 丙戊酸镁用于治疗继发癫痫的晚期肺癌脑转移患者1例报道[J]. 国际肿瘤学杂志, 2023, 50(3): 191-192. | 
| [9] | 左小平, 刘晓川, 吴西强, 李周, 夏天, 刘国凤. 老年早期肺癌患者经胸腔镜肺切除术后心律失常发生的危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2023, 50(12): 711-716. | 
| [10] | 陈郁, 许华, 刘海, 陈士新. 基于CT影像学特征的恶性肺纯磨玻璃结节患者病理分型预测模型构建[J]. 国际肿瘤学杂志, 2023, 50(11): 655-660. | 
| [11] | 田津铭, 杨继金. 局部介入联合免疫检查点抑制剂治疗中晚期肝癌研究进展[J]. 国际肿瘤学杂志, 2023, 50(10): 636-640. | 
| [12] | 张万芳, 王尤, 苏晶, 陈刚, 周福祥. 肺原发尤文肉瘤/原始神经外胚层瘤1例[J]. 国际肿瘤学杂志, 2023, 50(1): 62-64. | 
| [13] | 杨莎, 杨晓华, 王苏华, 薛晓燕, 徐俊. 老年肺癌胸腔镜手术后下肢深静脉血栓的危险因素分析及预测模型的建立和验证[J]. 国际肿瘤学杂志, 2022, 49(9): 532-536. | 
| [14] | 宋佳, 胡钦勇. TACE联合靶向、免疫治疗在BCLC B/C期肝细胞癌中的应用[J]. 国际肿瘤学杂志, 2022, 49(9): 550-554. | 
| [15] | 王津, 张耀圣, 孙婷婷, 王丹, 胡乃东. 以前胸壁聚集性多发蕈状肿物为表现的肺腺鳞状细胞癌皮肤转移1例[J]. 国际肿瘤学杂志, 2022, 49(9): 575-576. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||