
国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (9): 564-567.doi: 10.3760/cma.j.cn371439-20210517-00110
收稿日期:2021-05-17
									
				
											修回日期:2021-06-17
									
				
									
				
											出版日期:2021-09-08
									
				
											发布日期:2021-09-22
									
			通讯作者:
					张艳梅
											E-mail:15618653286@163.com
												基金资助:
        
               		Zhu Feng, Wang Shiwen, Xian Jingrong, Liu Yue, Zhao Hu, Zhang Yanmei(
)
			  
			
			
			
                
        
    
Received:2021-05-17
									
				
											Revised:2021-06-17
									
				
									
				
											Online:2021-09-08
									
				
											Published:2021-09-22
									
			Contact:
					Zhang Yanmei   
											E-mail:15618653286@163.com
												Supported by:摘要:
Neddylation修饰通路在肺癌中过度活化,可通过激活其底物CRL泛素连接酶活性诱导CRL抑癌蛋白底物降解,从而促进肺癌的发生发展。Neddylation修饰通路的小分子抑制剂MLN4924可以诱导肺癌细胞发生细胞周期阻滞、细胞凋亡和衰老,发挥抗肺癌作用。此外,通过靶向Neddylation修饰通路关键酶及其底物Cullin家族蛋白也可以抑制肺癌发生发展。
朱峰, 王诗雯, 鲜敬荣, 刘越, 赵虎, 张艳梅. 靶向Neddylation修饰通路及通路抑制剂MLN4924的抗肺癌作用及其机制研究[J]. 国际肿瘤学杂志, 2021, 48(9): 564-567.
Zhu Feng, Wang Shiwen, Xian Jingrong, Liu Yue, Zhao Hu, Zhang Yanmei. Research on the anti-lung cancer effects of targeted Neddylation modifying pathway and its inhibitor MLN4924 and its mechanism[J]. Journal of International Oncology, 2021, 48(9): 564-567.
| [1] |  
											  明超, 何锐, 孙远, 等. lncRNA与小细胞肺癌[J]. 国际肿瘤学杂志, 2019, 46(10):620-623. DOI: 10.3760/cma.j.issn.1673-422X.2019.10.011. 
											 												 doi: 10.3760/cma.j.issn.1673-422X.2019.10.011  | 
										
| [2] |  
											  Xu Q, Lin G, Xu H, et al. MLN4924 neddylation inhibitor promotes cell death in paclitaxel-resistant human lung adenocarcinoma cells[J]. Oncol Lett, 2018, 15(1):515-521. DOI: 10.3892/ol.2017.7314. 
											 												 doi: 10.3892/ol.2017.7314  | 
										
| [3] |  
											  Ni S, Chen X, Yu Q, et al. Discovery of candesartan cilexetic as a novel neddylation inhibitor for suppressing tumor growth[J]. Eur J Med Chem, 2020, 185:111848. DOI: 10.1016/j.ejmech.2019.111848. 
											 												 doi: 10.1016/j.ejmech.2019.111848  | 
										
| [4] |  
											  Zhou L, Zhang W, Sun Y, et al. Protein neddylation and its alterations in human cancers for targeted therapy[J]. Cell Signal, 2018, 44:92-102. DOI: 10.1016/j.cellsig.2018.01.009. 
											 												 doi: 10.1016/j.cellsig.2018.01.009  | 
										
| [5] |  
											  Liang Y, Jiang Y, Jin X, et al. Neddylation inhibition activates the protective autophagy through NF-kappaB-catalase-ATF3 axis in human esophageal cancer cells[J]. Cell Commun Signal, 2020, 18(1):72. DOI: 10.1186/s12964-020-00576-z. 
											 												 doi: 10.1186/s12964-020-00576-z  | 
										
| [6] |  
											  Chen P, Hu T, Liang Y, et al. Neddylation inhibition activates the extrinsic apoptosis pathway through ATF4-CHOP-DR5 axis in human esophageal cancer cells[J]. Clin Cancer Res, 2016, 22(16):4145-4157. DOI: 10.1158/1078-0432.CCR-15-2254. 
											 												 doi: 10.1158/1078-0432.CCR-15-2254  | 
										
| [7] |  
											  Li L, Kang J, Zhang W, et al. Validation of NEDD8-conjugating enzyme UBC12 as a new therapeutic target in lung cancer[J]. EBioMedicine, 2019, 45:81-91. DOI: 10.1016/j.ebiom.2019.06.005. 
											 												 doi: 10.1016/j.ebiom.2019.06.005  | 
										
| [8] |  
											  Jiang Y, Cheng W, Li L, et al. Effective targeting of the ubiquitin-like modifier NEDD8 for lung adenocarcinoma treatment[J]. Cell Biol Toxicol, 2020, 36(4):349-364. DOI: 10.1007/s10565-019-09503-6. 
											 												 doi: 10.1007/s10565-019-09503-6  | 
										
| [9] |  
											  Zhou L, Jiang Y, Liu X, et al. Promotion of tumor-associated macrophages infiltration by elevated neddylation pathway via NF-kappaB-CCL2 signaling in lung cancer[J]. Oncogene, 2019, 38(29):5792-5804. DOI: 10.1038/s41388-019-0840-4. 
											 												 doi: 10.1038/s41388-019-0840-4  | 
										
| [10] |  
											  Zhou W, Xu J, Tan M, et al. UBE2M is a stress-inducible dual E2 for Neddylation and ubiquitylation that promotes targeted degradation of UBE2F[J]. Mol Cell, 2018, 70(6):1008-1024. e6. DOI: 10.1016/j.molcel.2018.06.002. 
											 												 doi: 10.1016/j.molcel.2018.06.002  | 
										
| [11] |  
											  Zhou W, Xu J, Li H, et al. Neddylation E2 UBE2F promotes the survival of lung cancer cells by activating CRL5 to degrade NOXA via the K11 linkage[J]. Clin Cancer Res, 2017, 23(4):1104-1116. DOI: 10.1158/1078-0432.CCR-16-1585. 
											 												 doi: 10.1158/1078-0432.CCR-16-1585  | 
										
| [12] |  
											  Li H, Tan M, Jia L, et al. Inactivation of SAG/RBX2 E3 ubiquitin ligase suppresses KrasG12D-driven lung tumorigenesis[J]. J Clin Invest, 2014, 124(2):835-846. DOI: 10.1172/JCI70297. 
											 												 doi: 10.1172/JCI70297  | 
										
| [13] |  
											  Zhao G, Gong L, Su D, et al. Cullin5 deficiency promotes small-cell lung cancer metastasis by stabilizing integrin beta1[J]. J Clin Invest, 2019, 129(3):972-987. DOI: 10.1172/JCI122779. 
											 												 doi: 10.1172/JCI122779  | 
										
| [14] |  
											  Hung MS, Chen IC, You L, et al. Knockdown of cullin 4A inhibits growth and increases chemosensitivity in lung cancer cells[J]. J Cell Mol Med, 2016, 20(7):1295-1306. DOI: 10.1111/jcmm.12811. 
											 												 doi: 10.1111/jcmm.12811  | 
										
| [15] |  
											  Zhou J, Zhang S, Xu Y, et al. Cullin 3 overexpression inhibits lung cancer metastasis and is associated with survival of lung adenocarcinoma[J]. Clin Exp Metastasis, 2020, 37(1):115-124. DOI: 10.1007/s10585-019-09988-9. 
											 												 doi: 10.1007/s10585-019-09988-9  | 
										
| [16] |  
											  Ohta E, Itoh M, Ueda M, et al. Cullin-4B E3 ubiquitin ligase mediates Apaf-1 ubiquitination to regulate caspase-9 activity[J]. PLoS One, 2019, 14(7):e0219782. DOI: 10.1371/journal.pone.0219782. 
											 												 doi: 10.1371/journal.pone.0219782  | 
										
| [17] |  
											  Zhang H, Wang A, Tan Y, et al. NCBP1 promotes the development of lung adenocarcinoma through up-regulation of CUL4B[J]. J Cell Mol Med, 2019, 23(10):6965-6977. DOI: 10.1111/jcmm.14581. 
											 												 doi: 10.1111/jcmm.14581  | 
										
| [18] |  
											  Jia L, Yan F, Cao W, et al. Dysregulation of CUL4A and CUL4B ubiquitin ligases in lung cancer[J]. J Biol Chem, 2017, 292(7):2966-2978. DOI: 10.1074/jbc.M116.765230. 
											 												 doi: 10.1074/jbc.M116.765230  | 
										
| [19] |  
											  Mao H, Sun Y. Neddylation-independent activities of MLN4924[J]. Adv Exp Med Biol, 2020, 1217:363-372. DOI: 10.1007/978-981-15-1025-0_21. 
											 												 doi: 10.1007/978-981-15-1025-0_21  | 
										
| [20] |  
											  Lin S, Shang Z, Li S, et al. Neddylation inhibitor MLN4924 induces G2 cell cycle arrest, DNA damage and sensitizes esophageal squamous cell carcinoma cells to cisplatin[J]. Oncol Lett, 2018, 15(2):2583-2589. DOI: 10.3892/ol.2017.7616. 
											 												 doi: 10.3892/ol.2017.7616 pmid: 29434977  | 
										
| [21] |  
											  Cheng X, Ferrell JE Jr. Apoptosis propagates through the cytoplasm as trigger waves[J]. Science, 2018, 361(6402):607-612. DOI: 10.1126/science.aah4065. 
											 												 doi: 10.1126/science.aah4065  | 
										
| [22] |  
											  Wang Y, Luo Z, Pan Y, et al. Targeting protein neddylation with an NEDD8-activating enzyme inhibitor MLN4924 induced apoptosis or senescence in human lymphoma cells[J]. Cancer Biol Ther, 2015, 16(3):420-429. DOI: 10.1080/15384047.2014.1003003. 
											 												 doi: 10.1080/15384047.2014.1003003  | 
										
| [23] |  
											  Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence[J]. Trends Cell Biol, 2018, 28(6):436-453. DOI: 10.1016/j.tcb.2018.02.001. 
											 												 doi: S0962-8924(18)30020-5 pmid: 29477613  | 
										
| [24] |  
											  Li L, Wang M, Yu G, et al. Overactivated neddylation pathway as a therapeutic target in lung cancer[J]. J Natl Cancer Inst, 2014, 106(6):dju083. DOI: 10.1093/jnci/dju083. 
											 												 doi: 10.1093/jnci/dju083  | 
										
| [25] |  
											  Wood EA, Lu Z, Jia S, et al. Pevonedistat targeted therapy inhibits canine melanoma cell growth through induction of DNA re-replication and senescence[J]. Vet Comp Oncol, 2020, 18(3):269-280. DOI: 10.1111/vco.12546. 
											 												 doi: 10.1111/vco.12546  | 
										
| [26] |  
											  Zhou L, Jiang Y, Luo Q, et al. Neddylation: a novel modulator of the tumor microenvironment[J]. Mol Cancer, 2019, 18(1):77. DOI: 10.1186/s12943-019-0979-1. 
											 												 doi: 10.1186/s12943-019-0979-1  | 
										
| [27] |  
											  Jiang Y, Liang Y, Li L, et al. Targeting neddylation inhibits intravascular survival and extravasation of cancer cells to prevent lung-cancer metastasis[J]. Cell Biol Toxicol, 2019, 35(3):233-245. DOI: 10.1007/s10565-019-09472-w. 
											 												 doi: 10.1007/s10565-019-09472-w  | 
										
| [28] |  
											  Lan H, Tang Z, Jin H, et al. Neddylation inhibitor MLN4924 suppresses growth and migration of human gastric cancer cells[J]. Sci Rep, 2016, 6:24218. DOI: 10.1038/srep24218. 
											 												 doi: 10.1038/srep24218  | 
										
| [29] |  
											  Wei C, Yang C, Wang S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circula-ting tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1):64. DOI: 10.1186/s12943-019-0976-4. 
											 												 doi: 10.1186/s12943-019-0976-4  | 
										
| [30] |  
											  Kabir S, Cidado J, Andersen C, et al. The CUL5 ubiquitin ligase complex mediates resistance to CDK9 and MCL1 inhibitors in lung cancer cells[J]. Elife, 2019, 8:e44288. DOI: 10.7554/eLife.44288. 
											 												 doi: 10.7554/eLife.44288  | 
										
| [31] |  
											  Li H, Zhou W, Li L, et al. Inhibition of neddylation modification sensitizes pancreatic cancer cells to gemcitabine[J]. Neoplasia, 2017, 19(6):509-518. DOI: 10.1016/j.neo.2017.04.003. 
											 												 doi: 10.1016/j.neo.2017.04.003  | 
										
| [32] |  
											  Wang Y, Zhou Y, Zheng Z, et al. Sulforaphane metabolites reduce resistance to paclitaxel via microtubule disruption[J]. Cell Death Dis, 2018, 9(11):1134. DOI: 10.1038/s41419-018-1174-9. 
											 												 doi: 10.1038/s41419-018-1174-9  | 
										
| [1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. | 
| [2] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. | 
| [3] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. | 
| [4] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. | 
| [5] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. | 
| [6] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. | 
| [7] | 马正红, 姜超. 非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. | 
| [8] | 贺嘉慧, 胡钦勇. 基于GBD数据的中国和美国肺癌发病和死亡趋势及危险因素对比分析[J]. 国际肿瘤学杂志, 2024, 51(1): 29-36. | 
| [9] | 黄辉, 丁江华. 靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. | 
| [10] | 李开春, 丁昌利, 于文艳. 安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. | 
| [11] | 陈秋, 王雷, 王明琦, 张梅. 恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. | 
| [12] | 李青珊, 谢鑫, 张楠, 刘帅. 放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. | 
| [13] | 刘利, 朱思齐, 孙梦颖, 何敬东. PARP抑制剂在小细胞肺癌靶向治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(6): 368-372. | 
| [14] | 刘博翰, 黄俊星. 溶质载体SLC7A5及SLC7A11基因在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 280-284. | 
| [15] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏. HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||